RTKIOT GUI Documentation
Release v0.0.0.1

RTKIOT GUI community

Mar 27, 2025

CONTENTS

Get Started 2
1.1 Source Project Download 2
1.2 Description o ot e e e e e e e e e e e e e e e e e e 2
1.3 Software Architecture e e e e 3
1.4 Installation For Windows oL e e e 3
GUI Application 6
2.1 C-APP Application e e e e e 6
2.2 Use LVGL Design An Application o v v v v v i e et e e e e e e e e e e 8
2.3 Use ARM-2D Design An Application v i i it e e e e e e e 31
2.4 Use RVD Tool Design An Application 32
Widgets 70
3.1 Ob] .o e e e 71
32 Img . .o e 77
33 TeXt . o v o e e e e e e e e 87
34 3D Modelo e 100
35 VIBW . oo e 110
Porting 117
4.1 Platform Porting e e 117
42 FontPorting o e e e e e e e e e e e e 122
43 HoneyGUIPorting e e e e e e e e e e e 131
Samples 135
5.1 Calculator e e e e e e e 135
52 80BOX e 136
53 LiteGEX o 139
54 Status Bar . ..o e e e e 141
5.5 Fruit Ninja o o e e e 142
5.6 Music Player e e e e e e e 145
57 TIMEr . . . o o o e e e e e e e e 145
5.8 Watchface Market L e e e 146
Tool 147
6.1 Image Convert Tool. e e 147
6.2 Font Convert Tool e e e e e e 149
6.3 PackTool 150
6.4 MPTool 152
Design Spec 154

7.1 RealULSystem e e e e e e e e e e e e e e e e
7.2 Input Subsystem e e e e e e e e e e e e e e e e e
7.3 Display Subsystem L e e e e e e e
7.4 Software Accelerate L. e e e e e e e e e
8 FAQ
8.1 Development Environment L e
8.2 Porting e e e e e e e
8.3 Specification e e e e e
84 HowTolIncrease FPS o e
8.5 Display e e e e e
9 Get PDF
10 Glossary
11 Release Notes
I1.1 Major Changes o v i i e e e e e e e e e e e e e
11.2 Change Logs o e e
Index

170
170
170
172
173
174

175

176

178
178
178

179

RTKIOT GUI Documentation, Release v0.0.0.1

Note: Realtek solution, user guide, study guide and other documents listed on this tutorial (collectively, “Documents”)
are provided “as is” and with all faults. Customers agree to use any Documents solely for agreed purpose and subject to
the terms of this Disclaimer.

CONTENTS 1

CHAPTER
ONE

GET STARTED

1.1 Source Project Download

¢ Download on GitHub: https://github.com/realmcu/HoneyGUI

* Download on Gitee: https://gitee.com/realmcu/HoneyGUI

1.2 Description

HoneyGUI is a graphics display framework independently developed by Realtek. It is an open-source embedded graph-
ical user interface (GUI) library specifically designed for resource-constrained microcontrollers and embedded systems.
HoneyGUI is lightweight, feature-rich, and highly customizable, making it widely used in consumer electronics, home
appliances, medical devices, and smartwatches.

As a comprehensive display framework, HoneyGUI not only includes Realtek’s self-developed display engine but also
supports direct calls to external APIs such as LVGL and ARM2D for application development. Additionally, HoneyGUI
provides a PC-based simulation environment, allowing developers to quickly develop and debug applications without
relying on embedded hardware platforms. Furthermore, HoneyGUI can be used in conjunction with Realtek’s proprietary
front-end design tool, RVD, to achieve visual programming.

Here are several common methods for APP development:
* Develop applications using the RealGUI display engine by calling C/C++ APIs.
¢ Directly call LVGL APIs to develop applications.
¢ Directly call ARM-2D APIs to develop applications.

* Front-end development using JavaScript and XML. It is recommended to use RVisualDesigner asa PC -based
design tool for low-code development.

The GUI framework has good portability, which can run on a variety of chips and OS. PC Windows version is provided.

https://github.com/realmcu/HoneyGUI
https://gitee.com/realmcu/HoneyGUI
https://lvgl.io/
https://github.com/ARM-software/Arm-2D

RTKIOT GUI Documentation, Release v0.0.0.1

1.3 Software Architecture

1.4 Installation For Windows

1.4.1 Install Compiler

Download the MinGW-w64 toolchain, unzip it to drive C, and add it to the system environment variable Path.
1. MinGW-w64 Download
2. Unzip and copy to directory: C:\mingw64
3. Add a environment variable: C:\mingw64\bin:
* Open the Start Menu and search for Advanced system setting.
« Show System Properties and then go to the Advanced tab.
* Click on the Environment Variables button.
e Inthe User variables section, find and select the Path variable and click Edit.
* Click New and add C:\mingw64\bin.
* Click OK to close all dialogs.

1.4.2 Install Python

Python 3.9.7 is tested.

1.4.3 Install Scons

Open a CMD window and execute the following commands to install the Python scons library.

[> pip install scons==4.4.0]

After installing the MinGW-w64 toolchain and scons library, you can launch the application in two ways: stratup by
CMD or startup by GUI

1.4.4 Startup by CMD (Scons)

Open a CMD window in the HoneyGUI or gui folder, and then run the following command to start the application.

> cd win32 sim

> scons

> cd ..

> .\win32 sim\gui.exe

The scons command to perform the build process and then execute gui . exe to run it.

1.3. Software Architecture 3

https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/sjlj/x86_64-8.1.0-release-posix-sjlj-rt_v6-rev0.7z

RTKIOT GUI Documentation, Release v0.0.0.1

1.4.5 Startup by CMD (CMake)

* Dependency Software
CMake (tested with version 3.31.2): https://cmake.org/download/
MinGW-w64: mentioned before

« Initialization: In the HoneyGUT folder

cd win32 sim

mkdir build

cd build

cmake -G "MinGW Makefiles"

vV V VYV

« Compilation: In the HoneyGUI/win32 sim/build folder

> cmake -G "MinGW Makefiles"
> mingw32-make -j 32

* Configuration: In the HoneyGUI/win32 sim/build folder

[> cmake --build . --target menuconfig

* Run: In the HoneyGUT folder

.\win32 sim\gui.exe

)
\%

1.4.6 Startup by VSCode
Install VSCode

¢ Download VSCode

¢ Install C/C++ plug-in
Open Project

* Click HoneyGUI. code-workspace file

Run Project

You can select the Run and Debug options after entering the vscode interface, and then click the Run button.

1.4. Installation For Windows 4

https://cmake.org/download/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

RTKIOT GUI Documentation, Release v0.0.0.1

1.4.7 Display

Watch Project

The watchface is displayed in the window, and you can interact with it by swiping and long pressing.

Dashboard Project

The dashboard is displayed in the window.

1.4. Installation For Windows 5

CHAPTER
TWO

GUI APPLICATION

The GUI framework diagram is shown in the figure below:

2.1

Fig. 1: HoneyGUI Framework

In each project, multiple applications can exist simultaneously, but only one application can be in a running state at
any given time, while the other applications will be in a suspended state.

When using different rendering engines, the upper-layer implementation of the application will vary.
Each APP can create its own dedicated thread, or it may choose not to.
The APP can be installed, opened, closed, uninstalled, and switched.

The GUI_SERVER performs operations such as traversing widgets according to refresh instructions, rendering the
frame buffer, executing trigger callbacks, and scheduling apps.

C-APP Application

In this chapter, we will explore the creation and management of C-APPs within GUI framework. A C-APP is
essentially an application that users can develop to craft interactive and visually appealing user interfaces. Each
C-APP can be opened, closed, switched between, and can incorporate dynamic transition effects during switching.

The displayed content within a C-APP is organized using a nested widget tree structure. This structure includes
container widgets such as windows, scrollable pages, and switchable tabs, as well as content display widgets like
text, images, and canvases.

In addition to the default functions and effects, widgets within C-APPs offer a high degree of customization. Users
can set up custom frame animations for widgets and bind events to execute their defined operations. This flexibility
enables the creation of highly dynamic and interactive user interfaces tailored to specific needs and requirements.

2.1.1 Define A C-APP

Define app handle using a specific name with GUI APP_DEFINE NAME ANIMATION API:
There are also other ways available to define the app:

- GUI APP_DEFINE

- GUI _APP_DEFINE_ NAME

- GUI APP_DEFINE NAME ANIMATION FUNC CUSTOM

- struct gui app

RTKIOT GUI Documentation, Release v0.0.0.1

* Define app Ul design entry function with GUI _APP_ENTRY APL

» The UI design entry function will be executed once when the app startup.

2.1.2 Create The Widget Tree of A C-APP

* This is a clock app, serving as an example for this section.
* In the image below, you can see that the app interface has options for a stopwatch and a countdown timer.
¢ Clicking on these options allows you to switch between them.
The graph below shows the widget tree structure simplified:
¢ SCREEN:APP_STOPWATCH: The main container for the stopwatch app.
— WINDOW:LEFT_BUTTON: The window containing the left button.
+ CANVAS_RECT:LEFT_BUTTON: The background canvas of the left button.
+ TEXTBOX:LEFT _BUTTON: The text label for the left button.
— WINDOW:RIGHT_BUTTON: The window containing the right button.
* CANVAS_RECT:RIGHT_BUTTON: The background canvas of the right button.
+ TEXTBOX:RIGHT_BUTTON: The text label for the right button.
— MULTI_LEVEL:0_O: A multi-level container.
+ MULTI_LEVEL:1_0: A sub-container within the multi-level container, for the stopwatch.

+ MULTI_LEVEL:1_1: Another sub-container within the multi-level container, for the countdown timer.

2.1.3 C-APP Operations

Here is how the earlier mentioned operations could be applied specifically to the Stopwatch app:

e GUI_APP_SHUTDOWN (APP_STOPWATCH) : This command will close the Stopwatch application. If the app is
running a timer, it will stop the timer and close the interface. Any associated resources will be freed upon shutdown.

e GUI APP_STARTUP(APP_STOPWATCH) : This command will initialize and start the Stopwatch application.
The user interface will be displayed, and the app will be ready to start recording time.

* GUI_APP_SWAP (APP_STOPWATCH, APP_MAP) : This will switch from the currently running Stopwatch
app to the Map app.

2.1.4 C-APP Transition Animation

C-APP provides a robust feature set for managing transition animations between applications. It offers three main func-
tionalities: built-in animations, custom animations, and layer management. These features are
designed to enhance the user experience by providing smooth and visually appealing transitions.

¢ Built-in Animations

C-APP allows developers to easily implement built-in animations for app transitions using the
GUI APP_DEFINE NAME ANIMATION API This API lets you specify the transition animations
that occur when an app is opened or closed. The second parameter is used to define the animation
for opening an app, while the third parameter specifies the animation for closing an app, such as
GUI APP_ANIMATION 1. This straightforward API streamlines the process of integrating tran-
sition effects within your applications.

2.1. C-APP Application 7

RTKIOT GUI Documentation, Release v0.0.0.1

e Custom Animations

For more complex or unique animation requirements, C-APP supports custom animations
through the GUI_APP_DEFINE NAME ANIMATION FUNC CUSTOM API This feature en-
ables developers to set custom animation callback functions for both opening and closing tran-
sitions. The second parameter is the callback function for the opening animation, and the
third parameter is for the closing animation. These callback functions are defined using the
GUI ANIMATION CALLBACK FUNCTION DEFINE API This API provides an animation struc-
ture gui_animate t instance as an argument, which includes members that offer insights into the
progress and status of the animation, allowing for fine-tuned control and customization.

* Layer Management

C-APP also includes APIs for managing the layering of applications, which can be crucial for visual
hierarchy and user experience. The gui_app layer topandgui app layer bottomAPIs
allow developers to define the layer relationship between the currently active app and the app that is
about to open. This functionality ensures the correct ordering of windows and can help in maintaining
the intended focus and organization of the app interfaces.

Example

* Built-in Animations
— Define a C-APP
« Startup Animation: Zoom In from Screen Center (GUI_APP_ANIMATION 1)
* Shutdown Animation: Zoom Out to Screen Center (GUL_APP_ANIMATION 5)
— Swap to the C-APP
* From app watch to APP_STOPWATCH
* Custom Animations
— Define a C-APP
x Startup Animation: Pop-Up from Bottom of Screen (heart rate startup)
« Shutdown Animation: Slide Down to Disappear (heart rate_ shutdown)
— Swap to the C-APP
+ From app watch to APP_HEART_RATE

2.1.5 API

Warning: doxygenfile: Cannot find file “gui_app.h

2.2 Use LVGL Design An Application

2.2.1 LVGL introduction

¢ LVGL Website
¢ LVGL Document

2.2. Use LVGL Design An Application 8

https://lvgl.io/
https://docs.lvgl.io/master/intro/index.html

RTKIOT GUI Documentation, Release v0.0.0.1

e LVGL Intro

LVGL (Light and Versatile Graphics Library) is the most popular free and open-source embedded graphics library to
create beautiful Uls for any MCU, MPU and display type. LVGL provides everything you need to create an embedded
GUI with easy-to-use graphical elements, beautiful visual effects and a low memory footprint.

LVGL showcases Demo effects on its official website to demonstrate the UI building capabilities of LVGL. The online
documentation serves as the primary development resource for LVGL, providing detailed information on the design and
operational logic of LVGL, instructions on using various widgets, a wide range of example programs, and guidelines for
porting LVGL. Whether you are a beginner or an experienced developer, you can quickly get started and gain a deep
understanding of LVGL’s functionality and features based on the online documentation.

* LVGL Demo
e LVGL Example

2.2.2 HoneyGUI Simulator

A simulator is a powerful tool used for developing Ul that simulates the Ul interface of embedded devices on a computer. It
can mimic the behavior and appearance of a real hardware platform, providing developers with a convenient environment
to quickly create, debug, and test UI designs.

The primary purpose of a simulator is to display and interactively test the designed Ul interface in real-time, thereby
reducing the time and cost of repetitive testing on actual hardware. By using a simulator, developers can iterate designs
quickly, view the effects in real-time, and perform debugging and validation. This greatly speeds up UI development and
improves workflow efficiency.

Using a simulator has the following advantages:

* Real-time preview: The simulator can show the immediate effects of the Ul interface, allowing developers to quickly
see the appearance and functionality of their design, facilitating adjustments and modifications.

¢ Cross-platform support: Simulators can run on computers, eliminating the need for specific hardware platforms.

* Time and resource-saving: Simulators help avoid frequent flashing and testing of UI on actual hardware, reducing
additional time and cost overhead.

¢ Debugging and testing: Simulators provide rich debugging and testing capabilities to inspect the interaction, event
handling, and layout effects of Ul elements, aiding problem-solving and performance optimization.

Run LVGL in HoneyGUI Simulator

HoneyGUI Simulator is based on the scons tool and MinGW-w64 toolchain. It can be run and debugged in VScode. For
specific environment setup and running instructions, please refer to the Ger Started section.

After completing the environment setup for the HoneyGUI Simulator, when you start running it, you will see the default
HoneyGUI project in the simulator. To modify the simulator configuration file to run an LVGL project, go to the path
your HoneyGUI dir/win32 sim/ and open the file menu_config. h, which is the configuration file for the
simulator. Under the section HoneyGUI Demo Select, comment out all the demos. Under the section HoneyGUI
Enable LVGL, enable CONFIG REALTEK BUILD LVGL GUI. Then, start running it again in VScode. After the
build is successful, you will see the default LVGL demo project running in the simulator.

1. If you need to modify the screen size, open the file SConscript under the directory your HoneyGUI dir/
realgui/example/demo/, and modify the values of DRV_LCD WIDTH and DRV _LCD HEIGHT to the

desired pixel values.

2.2. Use LVGL Design An Application 9

https://docs.lvgl.io/8.3/intro/index.html
https://lvgl.io/demos
https://docs.lvgl.io/8.3/examples.html

RTKIOT GUI Documentation, Release v0.0.0.1

HoneyGUI LVGL

The directories and files related to LVGL in HoneyGUI are as follows:

HoneyGUI Dir
|-- Arm2D

-- doc
-- realgui

-- 3rd

app
core
dc
engine

example
-- BAK
-- demo
| app_ui lvgl.c

screen lvgl
-- assets
| lvgl example assets.c

-- _bin mkromfs.py

- mkromfs 0x4600000.bat

-- resource.h
root(0x4600000) .bin

I
I
I
|-- root
I
I
I
I

-- benchmark

-- keypad encoder
-- music

- stress

widgets

docs
env_support
examples

-- anim

-- arduino
-- assets

-- event

-- get started
-- layouts

-- libs

-- others

-- porting

-- scroll

-- styles

___ widgets

rlottie

// simulator LVGL UI entrance

//
//

//
//
//

//
//

//

//

//

LVGL user image and font C files
assets example

file system root folder

User Data pack script
resource files packed address
packed User Data

LVGL v8.3
LVGL demo source files

LVGL example source files

LVGL porting template

LVGL example widges

(continues on next page)

2.2. Use LVGL Design An Application

10

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

| |-- scripts

| |-- src

I

| | |-- widgets

| | |__ font // LVGL internal font

|

| | __ tests

I

|-- lvgl v9 // LVGL v9

| win32 sim

|__ port // Simulator porting

| -- realgui port // Simulator HoneyGUI porting
|-- lvgl port // Simulator LVGLv8 porting
[[-- 1v_conf.h // Simulator LVGL configuration
| [-- lv_port _disp.c
| [-- lv_port_disp.h
| |-- lv_port fs.c
| [-- lv_port fs.h
[|-- 1v_port _indev.c
| | v _port indev.h
I
| lvglv9 port // Simulator LVGLV9 porting

1. In HoneyGUI, the LVGL source files are located in the directory your HoneyGUI dir/lvgl:

» demos: Contains various comprehensive built-in examples of LVGL. Some examples can be experienced on
LVGL Demo .

* docs: Contains the development documentation for LVGL. It can be read online on the LVGL documentation
site: LVGL Document.

e env_support: Provides support for various environments or platforms.
» examples: Stores the built-in examples of LVGL. They can be experienced on LVGL Example .
« scripts: Contains some processing scripts that are not typically used when using LVGL.

* src: Stores the actual source code of LVGL. When developing with LVGL, the code files from this directory
are used.

* tests: Contains some CI testing files that are not used when using LVGL.

2. When running LVGL with the HoneyGUI simulator, the LVGL Ul will start running from the fileapp_ui 1lvgl.
C under the directory your HoneyGUI dir/realgui/example/demo.

3. When running LVGL with the HoneyGUI simulator, the root directory pointed to by the LVGL file system interface
isyour HoneyGUI dir/realgui/example/screen lvgl/root/.

2.2. Use LVGL Design An Application 11

https://lvgl.io/demos
https://docs.lvgl.io/master/intro/index.html
https://docs.lvgl.io/8.3/examples.html

RTKIOT GUI Documentation, Release v0.0.0.1

2.2.3 Porting

e Documentation: LVGL Porting

LVGL provides extensive porting support, allowing developers to easily integrate it into various embedded systems and
platforms. It supports drivers for various display devices, touchscreens, input devices, and custom GPUs. Developers
can configure the porting according to the requirements of their projects, such as adjusting the display parameters when
changing display devices, or adapting the input interface when replacing input devices. This article focuses on the porting
process and methods for display devices, input devices, and file systems. For more details, please refer to LVGL Porting.

Note: The following examples do not include the specific implementation of hardware device drivers. They only il-
lustrate how to integrate drivers with the LVGL interface. When implementing hardware device drivers, developers can
complete the driver functionality under a consistent API framework with the example driver, in order to interface with
the HoneyGUI driver layer. The porting interfaces of the example projects can be reused in higher layers.

Display

* Documentation: LVGL Porting Display, LVGL Overview Display

Once the developers have completed the debugging of the display device driver, and the device can communicate properly
with the display device and show colors. This section explains how to interface the driver with LVGL’s display interface
to render LVGL’s UL”

The display interface of LVGL is implemented in the file lv_port disp.c. Display parameters are configured in
the initialization function void 1v_port disp init(void) (), such as screen size and frame buffer configura-
tion. The display refresh function is defined as void disp flush(lv_disp drv_t *disp drv, const
lv_area t *area, lv_color_t *color p)().

The file Lv_port disp.c has been configured with different rendering and screen-pushing methods for reference.
Configure DISPLAY FLUSH_TYPE to switch modes, where RAMLESS XXX is suitable for display ICs without RAM,
RAM XXX is suitable for display ICs with RAM, XXX FULL_SCREEN XXX indicates pushing the entire screen each
time, and XXX _TWO_SEC indicates rendering only the changed display content, with the unit being the size of two
buffers. The pixel height of the buffer is defined by SECTION HEIGHT.

For detailed display device porting methods and considerations, please refer to the documentation LVGL Porting Display.
The following code snippet demonstrates porting a display IC without RAM:

* When using a display IC without RAM, a frame buffer that covers the entire screen size needs to be allocated.
Therefore, two frame buffers with a size equal to the screen size are allocated on the PSRAM for display. The
macro definitions for display parameters are defined in the file Lv_conf.h.

* If the display IC used has RAM, the size of the frame buffer does not need to be the same as the screen size. Due
to different screen update methods, the LVGL _USE _EDPI in lv_port disp.c needs to be configured as not
enabled (0) to switch the disp flush() function for screen update adaptation.

// flush func 1

#define RAMLESS TWO FULL SCREEN 0 // double buffer, full refresh
// flush func 2

#define RAM _TWO FULL SCREEN NO SEC 1 // double buffer, full refresh
#define RAM ONE FULL SCREEN TWO SEC 2 // two buffer

#define RAM_DIRECT TWO SEC 3 // two buffer

// two buffer: section height

(continues on next page)

2.2. Use LVGL Design An Application 12

https://docs.lvgl.io/8.3/porting/index.html
https://docs.lvgl.io/8.3/porting/index.html
https://docs.lvgl.io/8.3/porting/display.html
https://docs.lvgl.io/8.3/overview/display.html
https://docs.lvgl.io/8.3/porting/display.html

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

#define SECTION HEIGHT 40

#define DISPLAY FLUSH TYPE RAMLESS TWO_FULL_SCREEN

#1f (DISPLAY FLUSH TYPE == RAMLESS TWO FULL SCREEN)
#define LVGL USE EDPI 1

#else

#define LVGL USE EDPI 0]

#endif

// frame buffer config

#define LV _PORT BUF1 (uint32 t)0Ox08000000 // address in PSRAM

#define LV _PORT BUF2 (uint32 t)(0x08000000 + MY DISP _HOR RES * MY DISP VER RES,
—* LV _COLOR DEPTH / 8)

void lv port disp init(void)

{
Y A T TR
* Initialize your display
K o e e e e e e e e e m e m— = */
disp init();
)
* Register the display in LVGL
K o o e e e e e e e e e e e e e e e m e m e = */
static lv_disp drv_t disp drv; /*Descriptor of a display driver*/
lv_disp drv_init(&disp drv); /*Basic initialization*/

/*Set up the functions to access to your display*/

/*Set the resolution of the display*/
disp drv.hor res = MY DISP HOR RES;
disp drv.ver res = MY DISP VER RES;

/*Used to copy the buffer's content to the display*/
disp drv.flush cb = disp flush;

/**

* LVGL requires a buffer where it internally draws the widgets.

* Later this buffer will passed to your display driver's “flush cb" to copy its,
—content to your display.

* The buffer has to be greater than 1 display row

There are 3 buffering configurations:
1. Create ONE buffer:
LVGL will draw the display's content here and writes it to your display

* X X X X ¥

2. Create TWO buffer:
s LVGL will draw the display's content to a buffer and writes it your,
—display.

(continues on next page)

2.2. Use LVGL Design An Application 13

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

& You should use DMA to write the buffer's content to the display.

% It will enable LVGL to draw the next part of the screen to the other,
—buffer while

& the data is being sent form the first buffer. It makes rendering and,

—flushing parallel.

*

* 3. Double buffering

& Set 2 screens sized buffers and set disp drv.full refresh = 1.

& This way LVGL will always provide the whole rendered screen in "flush cb’
& and you only need to change the frame buffer's address.

*/

#if (DISPLAY FLUSH TYPE == RAMLESS TWO FULL SCREEN || DISPLAY FLUSH TYPE == RAM TWO
—FULL SCREEN_NO SEC)
static lv_disp draw buf t draw buf dsc 3;

lv_color t *buf 3 1 = (lv_color t *)LV PORT BUF1; /*A screen sized,,
—buffer*/
lv_color t *buf 3 2 = (lv_color_t *)LV _PORT BUF2; /*Another screen,,

—sized buffer*/
lv_disp draw buf init(&draw_buf dsc 3, buf 3 1, buf 3 2,
MY DISP_VER RES * MY DISP HOR RES); /*Initialize the,
—display buffer*/

/*Set a display buffer*/
disp drv.draw buf = &draw _buf dsc 3;

/*Required for Example 3)*/
disp drv.full refresh = 1;

#elif (DISPLAY FLUSH TYPE == RAM DIRECT TWO SEC || DISPLAY FLUSH TYPE == RAM ONE FULL
—.SCREEN_TWO SEC)
#if 1

static uint8_t attribute ((aligned(4))) disp buffl[MY DISP HOR RES * SECTION
—HEIGHT *

LV _COLOR

—DEPTH / 8];

static uint8_t attribute ((aligned(4))) disp buff2[MY DISP HOR RES * SECTION
—HEIGHT *

LV _COLOR

—DEPTH / 81;
#else

uint8_t *disp buffl = lv_mem alloc(MY DISP HOR RES * SECTION HEIGHT * LV _COLOR
—DEPTH / 8);

uint8_t *disp buff2 = lv_mem alloc(MY DISP HOR RES * SECTION HEIGHT * LV COLOR
—DEPTH / 8);
#endif

static lv_disp draw buf t draw buf dsc 2;

lv_color t *buf 2 1 = (lv_color t *)disp buffl;
lv _color t *buf 2 2 = (lv _color t *)disp buff2;

if ('buf 2 1 || !'buf 2 2)
{

DBG_DIRECT("LVGL frame buffer is NULL");

while (1);
}
lv_disp draw buf init(&draw buf dsc 2, buf 2 1, buf 2 2,

MY DISP HOR RES * SECTION HEIGHT); /*Initialize the display,,
—buffer*/

(continues on next page)

2.2. Use LVGL Design An Application 14

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

/*Set a display buffer*/
disp drv.draw buf = &draw buf dsc 2;

/*Required for Example 2)*/
disp drv.full refresh = 0;

// disp drv.rounder cb = rounder cb;
#endif

/*Finally register the driver*/
lv_disp drv_register(&disp drv);

Input Device

¢ Documentation: LVGL Porting Input devices

Once the developers have completed the debugging of the input device driver, and the device can communicate properly
with the input device. This section explains how to interface the driver with LVGL’s input interface to interact with
LVGL’s UL

The input interface of LVGL is implemented in the file Lv_port indev. c. Input device parameters are configured
in the initialization function void lv_port indev init(void) (), including selecting the device type, etc. The
input data acquisition function is configured in the function pointer indev_drv.read cb (), which depends on the
type of input device and is integrated in Lv_port_indev.c.

For detailed input device porting methods and considerations, please refer to the documentation LVGL Porting Input
devices. The following code snippet demonstrates porting a touch IC:

« In the initialization function void lv_port indev_init(void) (), select and register the corresponding
type of input device. For example, for a touchpad device, select Touchpad.

» LVGL will retrieve the input data through the function pointer indev_drv.read cb(). Developers need
to provide the input data in the function it points to. For a touch screen device, it would be the function void
touchpad read(lv _indev drv t *indev drv, lv indev data t *data) (). Fora touch
screen input device, you only need to provide the coordinates of the touch point and the touch state.

void lv port indev init(void)
{

/**

* Here you will find example implementation of input devices supported by,
—LittelvGL:

* - Touchpad

* - Mouse (with cursor support)

* - Keypad (supports GUI usage only with key)

* - Encoder (supports GUI usage only with: left, right, push)
* - Button (external buttons to press points on the screen)

*

* The "... read()" function are only examples.

* You should shape them according to your hardware

&

static lv_indev drv_t indev drv;

(continues on next page)

2.2. Use LVGL Design An Application 15

https://docs.lvgl.io/8.3/porting/indev.html
https://docs.lvgl.io/8.3/porting/indev.html
https://docs.lvgl.io/8.3/porting/indev.html

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

/*Initialize your touchpad if you have*/
touchpad init();

/*Register a touchpad input device*/

lv_indev drv_init(&indev drv);

indev drv.type = LV _INDEV TYPE POINTER;

indev _drv.read cb = touchpad read;

indev touchpad = 1lv_indev drv register(&indev drv);

static uintl6_t touch x
static uintl6_t touch y = 0;
static bool touch pressing = 0;

0;
0

/*Initialize your touchpad*/
static void touchpad init(void)

{
}

/*Will be called by the library to read the touchpad*/
static void touchpad read(lv_indev drv t *indev _drv, lv_indev data t *data)

{

/*Your code comes here*/

static lv_coord t last x = 0;
static lv_coord t last y = 0;

/* rt touch read port */
if (drv_touch read(&touch x, &touch y, &touch pressing) == false)
{

}

return;

/*Save the pressed coordinates and the state*/
if (touchpad is pressed())

{
touchpad get xy(&last x, &last y);
data->state = LV _INDEV STATE PR;
}
else
{
data->state = LV_INDEV STATE REL;
1

/*Set the last pressed coordinates*/
data->point.x last x;
data->point.y = last y;

(continues on next page)

2.2. Use LVGL Design An Application 16

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
/*Return true is the touchpad is pressed*/
// static lv _coord t touch x;
// static lv_coord t touch y;
static bool touchpad is pressed(void)
{
/*Your code comes here*/
return touch pressing;

}

/*Get the x and y coordinates if the touchpad is pressed*/
static void touchpad get xy(lv coord t *x, lv_coord t *y)

{
/*Your code comes here*/
(*x) = touch_x;
(*y) = touch_y;

1

File System

* Documentation: LVGL Overview File system

Using a file system to manage storage media makes data more organized and easier to maintain. It can improve compat-
ibility and cross-platform support for external storage devices. Through the file system interface, developers can easily
manipulate file data, making it more flexible and efficient. Integrating the file system with LVGL allows resource data to
be stored separately from project code, reducing compilation time, improving development efficiency, and enhancing the
flexibility of UI design.

The file system interface of LVGL is implemented in the file lv_port fs.c. The file system is configured in the
initialization function void lv_port fs init(void) (), which includes initializing the file system and mounting
drive letters. Developers need to integrate the interfaces of various file system functions into the corresponding LVGL fs
porting functions, ensuring that the input and output data formats are consistent with the interface definitions.

For detailed file system porting methods and considerations, please refer to the documentation LVGL Overview File
system. The following example demonstrates the porting of ROMEFS.

Note: ROMES is a read-only file system, thus it does not support file writing.

#include "romfs.h"

/**********************

b MACROS

KRR KKK KKK KKK/

#define ROMFS ADDR 0x04600000

JHFAF AR A AR KK KK K

* GLOBAL FUNCTIONS

**********************/

void lv port fs init(void)

{

fs init();
(continues on next page)

2.2. Use LVGL Design An Application 17

https://docs.lvgl.io/8.3/overview/file-system.html
https://docs.lvgl.io/8.3/overview/file-system.html
https://docs.lvgl.io/8.3/overview/file-system.html

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

/*Add a simple drive to open images*/
static lv_fs drv t fs drv;
lv_fs drv_init(&fs drv);

/*Set up fields...*/

fs drv.letter = 'F';

fs drv.open cb = fs open;
fs _drv.close cb = fs close;
fs drv.read cb = fs read;
fs drv.write cb = fs write;
fs _drv.seek cb = fs_seek;
fs drv.tell cb = fs_ tell;

fs drv.dir _close cb = fs dir close;
fs drv.dir _open cb = fs dir open;
fs drv.dir read cb = fs dir read;

lv_fs drv_register(&fs drv);

}

JHFAF AR A K KK KKK

* STATIC FUNCTIONS

**********************/

/*Initialize your Storage device and File system.*/
static void fs_init(void)

{
/*E.g. for FatFS initialize the SD card and FatFS itself*/
/*You code here*/
romfs_mount((void *)ROMFS_ADDR);
}
/ kk
* Open a file
* @param drv pointer to a driver where this function belongs
* @param path path to the file beginning with the driver letter (e.g. S:/folder/
—file. txt)
* @param mode read: FS MODE RD, write: FS _MODE WR, both: FS MODE RD | FS_MODE WR
* @return a file descriptor or NULL on error
&/

static void *fs open(lv_fs drv_t *drv, const char *path, lv_fs mode t mode)

{
lv fs res t res = LV _FS RES NOT IMP;

void *f = NULL;
if (mode == LV_FS MODE WR)
{
/*0pen a file for write*/
f = NULL; /*Add your code here*/

(continues on next page)

2.2. Use LVGL Design An Application 18

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

else if (mode == LV_FS MODE RD)

{
/*0pen a file for read*/
const char *filePath = path;
f = (void *)open(filePath, 0 RDONLY); /*Add your code here*/
}
else if (mode == (LV_FS MODE WR | LV_FS MODE RD))
{
/*0pen a file for read and write*/
f = NULL; /*Add your code here*/
}
return f;
}
/**
* Close an opened file
* @param drv pointer to a driver where this function belongs
* @param file p pointer to a file t variable. (opened with fs open)
* @return LV _FS RES OK: no error or any error from @lv_fs res t enum
*/
static lv fs res t fs close(lv fs drv t *drv, void *file p)
{
lv fs res t res = LV_FS RES NOT_IMP;
/*Add your code here*/
res = close((int)file p);
return res;
}
/**
* Read data from an opened file
* @param drv pointer to a driver where this function belongs
* @param file p pointer to a file t variable.
* @param buf pointer to a memory block where to store the read data
* @param btr number of Bytes To Read
* @param br the real number of read bytes (Byte Read)
* @return LV _FS RES OK: no error or any error from @lv_fs res t enum
*/

static lv_fs res t fs read(lv_fs drv t *drv, void *file p, void *buf, uint32_t btr,
—uint32_t *br)

{
lv fs res t res = LV _FS RES OK;
/*Add your code here*/
*br = read((int)file p, buf, btr);
return res;

}

2.2. Use LVGL Design An Application

19

RTKIOT GUI Documentation, Release v0.0.0.1

ROMFS File System Image

HoneyGUI provides support for packaging ROMFS file system images:

1. The working directory is your HoneyGUI dir/realgui/example/screen_lvgl/. The packaging
process requires Python environment support. The external file resources used in the project need to be packaged
as a file system image and downloaded as User Data.

2. Open the working directory and place the files to be packaged in the root/ folder. Double-click the
mkromfs 0x4600000.bat script to generate the file system image root (0x4600000) .bin and the re-
source mapping address resource.h. The default base address of the files is 0x4600000. resource.h
records the mapping address of the packaged files. Since ROMFS supports direct access using physical addresses,
developers can access the resource files directly through the mapping address.

3. Use the User Data feature of the MP Tool to download and burn the file system image to flash. The burn address
should match the base address. If you need to modify the base address, you can modify the “~addr <number>"
parameter in the mkromfs 0x4600000.bat script. For example, the following example changes the base
address from 0x4600000 to 0x4000000.

before - base address: 0x4600000, image: root(0x4600000).bin
python bin mkromfs.py --binary --addr 0x4600000 root root(0x4600000).bin

after - base address: 0x4000000, image: root(0x4000000).bin
python bin mkromfs.py --binary --addr 0x4000000 root root(0x4000000).bin

Note:
1. This packaging tool is only applicable for creating filesystem images of ROMEFS.

2. The packaging process is not a simple concatenation of files; it also records the directory information and file details
of the filesystem.

LittleFS File System Image

The LittleFS file system supports read and write operations and features power-loss protection. HoneyGUI provides
packaging support for LittleFS file system images:

1. The working directory is your HoneyGUI dir/realgui/example/screen lvgl/root 1fs. Ex-
ternal file resources used by the project will be packaged into a file system image and ultimately downloaded as
User Data.

2. Open the working directory and place the files you need to package under the root/ folder. Double-click the
scriptmklittlefs img.bat to generate the file system image root.bin.

3. Use the User Data function in MP Tool to download and write the file system image to flash. To change the size
of the file system, modify the ‘“-s <number>"’ parameter in the script mklittlefs img.bat. When using
interfaces from rtk fs. c for file operations, ensure that RTK_FS MNT ADDR matches the write address, and
MAX LFS SIZE matches the file system size.

4. TIf you need to unpack a file system image, double-click the script unpack littlefs img.bat to unpack
root.bin into the root up/ folder.

pack image:
-c <pack dir>, --create <pack dir>

(continues on next page)

2.2. Use LVGL Design An Application 20

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
create littlefs image from a directory

-b <number>, --block <number>
fs block size, in bytes

-p <number>, --page <number>
fs page size, in bytes

-s <number>, --size <number>
fs image size, in bytes

HoHoH HH R H B R

mklittlefs.exe -c root/ root.bin -b 4096 -s 512000 -p 16

unpack image:
-1, --list
list files in littlefs image

-u <dest dir>, --unpack <dest dir>
unpack littlefs image to a directory

HoH R H®

mklittlefs.exe root.bin -1
mklittlefs.exe root.bin -u root up/

Note:

1. This packaging tool is only applicable for creating filesystem images of LittleFS.

2.2.4 LVGL Benchmark

LVGL Benchmark is a performance testing tool designed to evaluate the graphical display performance of the LVGL
library in various hardware and software environments. By running the Benchmark, users can obtain data on frame
rate, rendering speed, and memory usage, helping to optimize display configurations and debug performance issues. The
Benchmark includes various test scenarios such as graphical drawing, animations, and text rendering, each simulating
common operations in real applications. Users can use these tests to compare the performance of different configurations
and platforms, enabling targeted optimization adjustments. The official documentation for the LVGL benchmark test is
located at your HoneyGUI dir/lvgl/demos/benchmark/README.md.

2.2. Use LVGL Design An Application 21

RTKIOT GUI Documentation, Release v0.0.0.1

Benchmark for Reference

Table 1: Benchmark Result

Chip CPU Accelera- Display Buffering Configura- Result

Model CLK tor Size tions

RTL8762E 40MHz SW 240*280 Double buffing Weighted FPS:15; Opa. speed:
RTL8762E 40MHz SW 80*160 Double buffing £§3lted FPS:34; Opa. speed:
RTL8762D 90MHz SW 240*280 Double buffing ?;Zioghted FPS:161; Opa. speed:
RTL8762D 90MHz SW 80*160 Double buffing gjioghted FPS:337; Opa. speed:
RTL8772G 125MHz PPEI1.0 480*480 Two buffer ?Sé?ghted FPS:20; Opa. speed:
RTL8772G 125MHz PPEI1.0 240%*280 Double buffing i&ggz;lted FPS:721; Opa. speed:
RTL8773E 100MHz PPE2.0 390*450 Double buffing zKZZioghted FPS:159; Opa. speed:

86%

Table 2: Render acceleration on different platforms

Chip CPU Hard- Image Image Im- Image Rounded Rect- RLE Char- Lines
Model CLK ware Ren- Trans- age Rota- Rectan- angle De- ac-
Acceler- dering parency Scal- tion gle Filing cod- ters
ator ing ing
RTLS. 125M PPEL.0 HW HW HW SW SW+HW HW HW SW SW
RTL8 100M PPE2.0 HW HW HW HW SW+HW HW HW SW SW
Note:

1. Effects involving LVGL Mask require SW processing.
2. RTL8772G supports the Helium hardware accelerator.

2.2.5 Start with Demo

e LVGL Demo
* LVGL Example

It is recommended for developers to read and understand the LVGL Overview and LVGL Widgets - Base object sections
before starting development. This will help them grasp the design concepts and logic of LVGL.

LVGL provides a rich set of demos and examples to help developers understand and familiarize themselves with the usage
of various widgets and features.

* The LVGL Demo showcases comprehensive demos with their source code stored in the directory your Hon-
eyGUI dir/1lvgl/src/demo. Developers can directly invoke the corresponding Lv_demo xxx () func-
tion to explore and understand them.

2.2. Use LVGL Design An Application 22

https://lvgl.io/demos
https://docs.lvgl.io/8.3/examples.html
https://docs.lvgl.io/8.3/overview/index.html
https://docs.lvgl.io/8.3/widgets/obj.html
https://lvgl.io/demos

RTKIOT GUI Documentation, Release v0.0.0.1

 The online documentation LVGL Example demonstrates the running effects of various examples, with their source
code stored in the directory your HoneyGUI dir/lvgl/src/example. Developers can directly call
the corresponding lv_example xxXx() function to familiarize themselves with widgets and understand their
features.

2.2.6 Resource Converter
To use images and fonts in LVGL, they need to be converted to formats that LVGL can recognize using specific tools.
LVGL supports converting resources to C array format and bin binary file format.

In the C array format, the resources will be included in the compilation process. They will be compiled every time the
program logic changes, and the size of the resources will be included in the APP image.

In the bin binary file format, the resources are not included in the compilation. They are stored separately and require a
file system or other means to access them. An example Lvgl example assets.c is provided in the path your
HoneyGUI dir/realgui/example/screen lvgl/assets/ to demonstrate how to configure resources of
different formats for the widgets.

Image Converter

LVGL Image Converter

* Online conversion tool: LVGL Image Converter
* Documentation: LVGL Overview Images
Please refer to the following steps for usage in LVGL Overview Images - Online Converter:
1. Select the LVGL version.
2. Choose the image file.
3. Select the color format for the output file.
For color format details, please refer to LVGL Overview Images - color format.

4. Choose the type of output image (C array/binary file).
5. Click Convert to obtain the output file.

The LVGL Overview Images document provides detailed instructions on how to use image resources and the image
conversion tool in LVGL, along with simple usage examples. To automatically build image resources generated as C
arrays, place them under the directory your HoneyGUI dir/realgui/example/screen lvgl/assets/
directory.

It’s worth mentioning that when using the bin file as an image resource, the data in the bin file follows the format of 4
Byte header + data. The lv_img header t contains information such as color format, width, and
height. To construct a complete Lv_img dsc t to describe the image, you can calculate the data size using
the information from the lv_img header t.

typedef struct {

uint32_t cf : 5; /*Color format: See “lv_img color format t */
uint32_t always zero : 3; /*It the upper bits of the first byte. Always zero to,
—look like a
non-printable character*/

uint32_t reserved : 2; /*Reserved to be used later*/
(continues on next page)

2.2. Use LVGL Design An Application 23

https://docs.lvgl.io/8.3/examples.html
https://lvgl.io/tools/imageconverter
https://docs.lvgl.io/8.3/overview/image.html
https://docs.lvgl.io/8.3/overview/image.html#online-converter
https://docs.lvgl.io/8.3/overview/image.html#color-formats
https://docs.lvgl.io/8.3/overview/image.html

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

uint32_t w : 11; /*Width of the image map*/
uint32_t h : 11; /*Height of the image map*/
} lv_img header t;

/** Image header it is compatible with

* the result from image converter utility*/

typedef struct {
lv_img header t header; /**< A header describing the basics of the image*/
uint32_t data size; /**< Size of the image in bytes*/
const uint8 t * data; /**< Pointer to the data of the image*/

} lv_img dsc t;

HoneyGUI Image Convert Tool

¢ Download link for the conversion tool: HoneyGUI Image Convert Tool
¢ Documentation: HoneyGUI Image Convert Tool - Doc

When further compression of image resource space is needed, the HoneyGUI Image Convert Tool supports compressing
and converting images. The IC supports both software and hardware decoding. The HoneyGUI Image Convert Tool uses
RLE (Run-length Encoding) compression, a simple lossless algorithm that reduces storage space by encoding consecutive
repeated pixel values and the number of repetitions. It has low computational complexity and high compression rates,
making it ideal for compressing GUI resources.

Compressing Images

Users can utilize the HoneyGUI Image Convert Tool to convert image resources into RLE-compressed binary file format.
For detailed usage steps, please refer to HoneyGUI Image Converter - Doc:

1. Select the image file to be compressed (supports PNG, JPEG, etc.)

2. Configure the image conversion parameters: enable Compress, choose Compress Mode as RLE, enable Color Head,
and select Color Space as needed

3. Click to Convert and generate a compressed binary file

Importing into LVGL

The binary files generated by the HoneyGUI Image Convert Tool can be imported into LVGL for use:
1. If importing as a file

Note: Modify the file extension to .rle, then place it into the file system at your HoneyGUI dir/
realgui/example/screen lvgl/root

// file: lvgl example assets.c

void load img rle file(void)

{
lv_obj t *icon = lv_img create(lv_scr_act());
lv_img set src(icon, "F:/logo lvgl.rle");
lv_obj set pos(icon, 0, 0);

}

2.2. Use LVGL Design An Application 24

https://docs.realmcu.com/HoneyGUI/cn/latest/tool/index.html
https://docs.realmcu.com/HoneyGUI/cn/latest/tool/Resource/image.html
https://docs.realmcu.com/HoneyGUI/cn/latest/tool/Resource/image.html

RTKIOT GUI Documentation, Release v0.0.0.1

Note: When using RLE + ROMFS, the decoder will directly retrieve images from the file system, i.e.
FLASH, without additional caching. For situations that require caching processing, please read file from

filesystem to memory, and use it as a array.

2. If imported as a C array format

e a. Open the LVGL image conversion tool and upload the compressed file to be converted, please

refer to LVGL Image Converter.
¢ b. In the Color format option, be sure to select CF_RAW

» c. Export the converted image file as a C file, for example, Logo_1lvgl rle.c

Notel: The storage path of the converted file: Place the converted C file in the following
reference path: your HoneyGUI dir/realgui/example/screen_lvgl/assets

Note2: Modify the color format (cf) in the image descriptor: The exported C file, for example
logo_lvgl rle.c, needs to be modified to ensure :c:var:cf: LV_IMG_CF_RAW:

// file:logo lvgl rle.c

const lv _img dsc t logo lvgl rle = {
.header.cf = LV _IMG CF RAW,
.header.always zero = 0,
.header.reserved = 0,
.header.w = 0,
.header.h = 0,
.data size = 1889,
.data = logo lvgl rle map,

I

¢ d. Include the generated C file in your project and create the image object:

// file:lvgl example assets.c
void load img rle c file(void)

{
LV_IMG DECLARE(logo_lvgl rle);
lv_obj t *icon = lv_img create(lv_scr_act());
lv_img set src(icon, &logo lvgl rle);
lv_obj set pos(icon, 0, 0);

}

3. If importing as a file, accessing image resources using file addresses

» a. Construct the LVGL image header Lv_img_dsc_t, for example:

(// file: lvgl example assets.c
#include "resource.h"

const lv_img dsc t lvgl test img rle = {
.header.cf = LV_IMG CF RAW,
.header.always zero = 0,
.header.reserved = 0,
.header.w 0,
.header.h 0,
.data size = 0,
.data = LOGO LVGL RLE,

T

Note: Set the color format in the image descriptor to cf = LV_IMG_CF_RAW

e b. Access the image resources and create the widget:

2.2. Use LVGL Design An Application

25

https://lvgl.io/tools/imageconverter

RTKIOT GUI Documentation, Release v0.0.0.1

(// file: lvgl example assets.c

void load img rle dataAddr file(void)

{
lv_obj t *icon = lv_img create(lv_scr act());
lv_img set src(icon, &lvgl test img rle);
lv_obj set pos(icon, 0, 0);

Enabling RLE Decoder in LVGL

To decode RLE compressed image resources in LVGL, you need to enable the RLE decoder and allocate cache space for
it.
1. Enable the RLE decoder: in the configuration file Lv_conf. h, locate the LV_USE_RTK IDU macro definition
and set it to enable (1)
2. Allocate decoding cache: Configure the following parameters in the Lv_conf . h file:
* LV_SSRAM START: The starting address of the cache

e LV_SSRAM SIZE: Cache space size, ensuring that this size is sufficient to accommodate the decoding data of the
largest entire image used

// file: lv _conf.h

/*RTK_IDU decoder library*/
#define LV USE RTK IDU 1

#ifdef LV _USE RTK IDU

#define LV _MEM PSRAM_ADR 0x08000000

#define LV _PSRAM SIZE (MY DISP HOR RES * MY DISP VER RES * 4)

#define LV _PSRAM_START (LV_MEM_PSRAM_ADR + 2 * MY DISP _HOR_RES * MY DISP VER RES,
—* LV COLOR DEPTH / 8)

#ifndef LV_MEM ADR

#define LV_MEM ADR LV _PSRAM_START

#endif

#endif

Note: When using the RLE decoder along with ROMFS, the decoder will directly obtain images from the file system,
i.e., FLASH, without additional caching.

Font Converter

* Online conversion tool: LVGL Font Converter
* Documentation: LVGL Overview Fonts
Please refer to the following steps for usage in LVGL Overview Font - Add a new font :
1. Set the name of the output font.
2. Set the height of the font in pixels.

3. Set the bpp (bits per pixel) of the font.

2.2. Use LVGL Design An Application 26

https://lvgl.io/tools/fontconverter
https://docs.lvgl.io/8.3/overview/font.html
https://docs.lvgl.io/8.3/overview/font.html#add-a-new-font

RTKIOT GUI Documentation, Release v0.0.0.1

It represents how many bits are used to describe each pixel. Higher values result in better anti-aliasing and smoother
edges, but larger font file size.

4. Choose the type of output font (C array/bin file).
5. Select the font file (TTE/WOFF).
6. Set the Unicode range of characters to convert, or directly list the characters that need to be converted.

The LVGL Overview Fonts document provides detailed instructions on how to use font resources and the font conversion
tool in LVGL, along with simple usage examples. In the example, Lv_example label 3() demonstrates how to
configure a specific font for a label widget. To automatically build font resources generated as C arrays, place them under
the directory your HoneyGUI dir/realgui/example/screen lvgl/assets/ directory.

LVGL provides built-in fonts, which are saved as arrays in the directory your HoneyGUI dir/lvgl/src/font/
. Each font file specifies the included characters at the beginning of the file. The built-in fonts include a Chinese font,
lv_font simsun_ 16 cjk.c, whichisa CIK (Chinese, Japanese, and Korean) 16px font, but it is a single font size
with a limited character set.

2.2.7 Development Resources

Online Doucument

e LVGL Document

The LVGL Document provides comprehensive technical documentation and tutorials to help developers better understand
and use the LVGL graphics library. The documentation includes the following:

* Overview and features: The documentation introduces the basic concepts and features of LVGL, including graph-
ical objects, screen management, event handling, theme styles, and more. Users can read the documentation to
understand the core functionality and advantages of LVGL.

* Application development guide: The documentation provides detailed application development guides, including
how to initialize and configure LVGL, how to create and manage graphical objects, how to handle user input and
events, and how to add themes and styles. These guides can help users quickly get started with LVGL and develop
their own applications.

¢ API documentation: The documentation provides a comprehensive list of LVGL’s API interfaces and functions,
along with their parameters and usage. Users can consult the API documentation to understand the specific functions
and usage of individual functions and interfaces, enabling more advanced customization and extension.

¢ Example code: The documentation provides numerous example codes covering common application scenarios and
functionalities. Users can leverage these example codes to accelerate development and quickly implement specific
functionality requirements.

Using the LVGL online documentation can help users better understand and master the usage and techniques of LVGL,
improving development efficiency. Users can gradually learn the contents of the documentation, starting from simple
interface construction to complex application development, gradually mastering the various features and capabilities of
LVGL. Additionally, the documentation provides examples and code snippets, making it easier for users to develop ap-
plications with rich interfaces and functionality.

Users can access the LVGL online documentation through a web browser and browse through the chapters and contents to
find and learn relevant knowledge according to their needs. Additionally, the documentation provides a search function to
quickly find specific information within the documentation. In summary, the LVGL online documentation is an important
resource for users to understand and use the LVGL graphics library. It provides comprehensive and detailed guidance to
help users quickly get started and develop better applications.

2.2. Use LVGL Design An Application 27

https://docs.lvgl.io/8.3/overview/font.html
https://docs.lvgl.io/master/intro/index.html
https://docs.lvgl.io/master/intro/index.html

RTKIOT GUI Documentation, Release v0.0.0.1

It is worth noting that while developing based on the documentation can complete most of the Ul effects, the documen-
tation may not be exhaustive. When there are omissions in the documentation, the code should be considered the most
reliable source.

Github Repo

Github LVGL

The LVGL GitHub repository is an important platform for developers to use and contribute to LVGL:

Getting the latest version: The LVGL GitHub repository provides access to the latest LVGL versions and up-
dates. Developers can stay up-to-date with the latest feature updates, bug fixes, and improvements, keeping their
applications in sync with LVGL.

Engaging in the community and contributing code: Through the GitHub repository, developers can actively partic-
ipate in LVGL community discussions and exchanges, learning about other developers’ issues and solutions. At the
same time, developers can contribute their own code and improvements, making LVGL more robust and powerful.

Submitting issues and bug reports: The GitHub repository offers a platform for issue and bug reporting, allowing
developers to submit problems and bugs encountered during their use of LVGL. This helps the LVGL development
team promptly discover and resolve issues, improving the stability and reliability of LVGL.

Learning from examples and documentation: The GitHub repository also includes example code and documentation
to help developers better understand and learn how to use LVGL. By browsing the repository’s example code
and documentation, developers can learn about the various features and capabilities of LVGL, enhancing their
development skills.

Designer

GUI Guider: Free

Squareline: Squareline Studio, Paid

The LVGL Designer is a visual tool for designing and developing interfaces for the LVGL graphics library. It provides an
intuitive and user-friendly interface that allows developers to quickly create and edit GUI interfaces using LVGL.

The LVGL Designer has the following features and functionalities:

Visual interface design: The designer provides an intuitive visual interface where developers can create and edit
GUI interfaces using mouse and simple drag-and-drop operations. It allows adding and adjusting various graphical
objects, labels, buttons, text boxes, images, and more, while setting their size, position, style, and other attributes.

Real-time preview and debugging: The designer supports real-time preview, allowing developers to see the appear-
ance and behavior of the designed interface at any time. This helps developers quickly adjust and optimize the
interface to achieve the desired effect.

Event and interaction management: The designer enables developers to conveniently add and manage events and
interaction behaviors. Developers can add click, scroll, drag, and other events to graphical objects and configure
their response behaviors through simple configurations.

Theme and style customization: The designer supports customization of themes and styles, allowing developers to
easily select and apply different themes and styles to make the interface more personalized and visually appealing.

Code export: The designer allows exporting the designed interface as LVGL code, providing the necessary ini-
tialization and configuration. This enables developers to directly use the exported code for LVGL application
development, eliminating the need for manual code writing.

Using the LVGL Designer greatly accelerates the design and development process of GUI interfaces, especially for non-
professional Ul designers or developers. With simple drag-and-drop and configuration operations, developers can quickly

2.2. Use LVGL Design An Application 28

https://github.com/lvgl/lvgl
https://squareline.io/

RTKIOT GUI Documentation, Release v0.0.0.1

create attractive and interactive interfaces, improving development efficiency and user experience. Additionally, the de-
signer provides a convenient way to export the designed interface as usable LVGL code, allowing developers to easily
integrate it into their applications.

Forum

* LVGL Forum

The official LVGL forum is a developer community dedicated to discussing and sharing topics and resources related to
the LVGL graphics library. It provides a platform for developers to exchange ideas, seek help, and share their experiences
and projects.

Some features and functionalities of the LVGL forum include: - Questions and answers: Developers can ask questions
about their LVGL usage on the forum and receive help and answers from other developers. This makes the forum a
valuable knowledge base, providing experience and tips for problem-solving.

e Tutorials and examples: The forum contains many useful tutorials and example code, demonstrating how to use
different features and functionalities of LVGL. These resources are helpful for novice developers to learn and master
LVGL.

* Developer contributions and project showcases: Developers on the forum can share their projects and customized
LVGL interfaces, as well as contributions that other developers can share, discuss, and reference.

e Updates and release announcements: The LVGL development team provides announcements and explanations
about new version releases and updates on the forum. This allows developers to stay informed about the latest
features and improvements.

* Community interaction: The forum provides a platform for community interaction, where developers can commu-
nicate, share, and establish connections, enhancing collaboration and development within the LVGL community.

The LVGL forum is an important resource for developers using LVGL to receive support, solve problems, learn, and
share experiences.

Blog

* LVGL Blog

The official LVGL blog is a regularly updated platform that provides the latest information, tutorials, case studies, and
developer insights about the LVGL graphics library. The LVGL development team and community members frequently
publish various content related to LVGL on the blog, helping developers better understand and use LVGL.

The LVGL blog covers the following content: - Updates and new feature introductions: The blog publishes articles on the
latest version of LVGL, highlighting new features, bug fixes, and performance improvements. This allows developers to
stay up-to-date and leverage the latest LVGL capabilities.

* Tutorials and guides: The blog provides practical tutorials and guides on LVGL, covering various topics rang-
ing from beginner to advanced. These tutorials often include example code and detailed explanations, helping
developers master the usage of LVGL and best practices.

 Case studies and project showcases: The blog shares case studies and project showcases implemented with LVGL.
These articles demonstrate how to use LVGL to build real-world applications and interfaces, providing developers
with inspiration and experience from practical implementations.

¢ Technical deep dives and developer insights: The blog also covers in-depth analyses of LVGL and insights from
developers. These articles may explore topics such as the internal workings of LVGL, performance optimization
techniques, and excellent design practices, providing developers with a deeper understanding and food for thought.

2.2. Use LVGL Design An Application 29

https://forum.lvgl.io/
https://blog.lvgl.io/

RTKIOT GUI Documentation, Release v0.0.0.1

The LVGL blog is an important resource for developers to understand and master LVGL. By reading the blog, developers
can gain insights on the latest LVGL developments, learning materials, and technical insights, helping them utilize LVGL
to build excellent graphical interfaces.

2.2.8 FAQ

« LVGL FAQ

HoneyGUI vs LVGL Picture Drawing Frame Rate

GRAM Screen (280x456) RAM Block Drawing

Background: RTL8772G, RGB565, uncompressed images, test for the performance of displaying a single image (Hon-
eyGUI rectangle fill data is temporarily unavailable; LVGL has not adapted PPE hardware acceleration for image scaling

yet).

Table 3: RAM Block Drawing

Test Case HoneyGUI FPS (SW) HoneyGUI FPS (PPE) LVGL FPS (SW) LVGL FPS (PPE)
Draw Image 73 74 70 73

Fill Rectangle 3 85 74 74

Rotate Image 45° 3 3 4 4

Scale Up 1.5x 3 31 3 25

Scale Down 0.5x 9 73 12 25

Table 4: RAM Block Drawing Test Data
Section HoneyGUI FPS LVGL FPS

10 70 45
20 73 73
30 74 73

PSRAM Full Frame Buffer Drawing (800x480)

Background: RTL8772G, RGB565, image size 315x316, uncompressed images, RGB screen, test for the performance
of displaying a single image.

Table 5: PSRAM Full Frame Buffer Drawing

Test Case HoneyGUI FPS (SW) HoneyGUI FPS (PPE) LVGL FPS (SW) LVGL FPS (PPE)
Draw Image 76 76 17 25

Fill Rectangle 4 78 25 26

Rotate Image 45° 3 3 6 4

Scale Up 1.5x 2 23 3 13

Scale Down 0.5x 10 82 13 50

2.2. Use LVGL Design An Application 30

https://docs.lvgl.io/8.3/intro/index.html#faq

RTKIOT GUI Documentation, Release v0.0.0.1

Analysis

Extra PSRAM is required for RGB screen as a cache buffer. LVGL uses PSRAM completely as its image cache buffer

compared to HoneyGUI which combines RAM and PSRAM. LVGL performs worse overall.

HoneyGUI vs LVGL RAM Consumption

Table 6: GRAM Screen (280x456) Dynamic RAM Consumption

Test Case HoneyGUI (Bytes) LVGL Widget Consumption (Bytes)
Draw Image 156 176
Fill Rectangle 64 200
Rotate Image 45° 156 208
Scale Up 1.5x 156 208
Scale Down 0.5x 156 176

Table 7: GRAM Screen (280x456) Static RAM Consumption

Test Case HoneyGUI (Bytes) LVGL Widget Consumption (Bytes)
Draw Image 41892(40KB) 55300(54KB)
Fill Rectangle 41892(40KB) 55300(54KB)
Rotate Image 45° 41892(40KB) 55300(54KB)
Scale Up 1.5x 41892(40KB) 55300(54KB)
Scale Down 0.5x 41892(40KB) 55300(54KB)

Conclusion

» Applicable Scenarios: For large screen sizes (e.g. 800x480) and full-frame drawing, HoneyGUI is recommended.
For frequent partial screen refresh projects, LVGL is recommended. For block drawing when RAM resources are

tight, HoneyGUI is recommended, with section recommended parameters set to 10.

* Rotation, Scaling: LVGL performs faster in 2D rendering using a 2x2 matrix compared to HoneyGUI's 3x3
matrix, which handles more data for 2D rendering. For 2.5D or pseudo-3D effects, HoneyGUI will perform better.

* In practical projects, select the suitable framework based on specific frame rate requirements, system resources,

and other functional needs. Conduct specific performance testing and evaluation if possible.

This analysis provides valuable insights for selecting the appropriate display framework and assists decision-makers in

making the best choice based on actual requirements.

2.3 Use ARM-2D Design An Application

Arm-2D is an open-source project for 2.5D image processing on Cortex-M processors.

e Initial Targets: IoT terminal devices, white appliances, handheld devices, and wearable devices, especially for

resource-constrained and low-power-demand devices.

¢ Initial Focus: Graphical User Interface (GUI) development.

2.3. Use ARM-2D Design An Application

31

RTKIOT GUI Documentation, Release v0.0.0.1

2.3.1 ARM-2D Introduction

e ARM-2D

2.4 Use RVD Tool Design An Application

2.4.1 Overview

RTKIOT Visual Designer is a tool to create graphical interface designs for Realtek series ICs; its currently supported ICs
are shown in the table below.

Table 8: Supported ICs

No Supported ICs
1 RTL8762D

2 RTL8762G

3 RTL8763E

4 RTL8772G

5 TBD

RTKIOT Visual Designer supports:
* Drag the widgets from the toolbox and drop them in the Design View.

» Drag and drop the widget to change its position in the Design View, or modify the position and appearance
of the widget via the Property View.

* Export the user-designed GUI project to . bin, and the . bin can be programmed into the IC to display the
graphical interface.

 Simulate the GUI project on a PC.
This document mainly consists of:
* Function Panels
* Resource Management
* Menu Bar
* Quick Start to Tutorials
e GUI Demo Project

To simplify the document, 7ool is used below to refer to the RTKIOT Visual Designer.

2.4.2 Function Panels

Toolkit/Widgets

* Non-containerized widget
— Can be used as the parent of other widgets.
— There is a coordinate-following relationship between parent and child widgets.

— Visible when the child widget is out of range of the parent widget.

2.4. Use RVD Tool Design An Application 32

https://github.com/ARM-software/Arm-2D

RTKIOT GUI Documentation, Release v0.0.0.1

 Container widget

Can be used as the parent of other widgets.

— There is a coordinate-following relationship between parent and child widgets.

Visible when the child widget is out of range of the parent widget.

Can drag and drop a widget from the toolbox into the container widget.

This section lists the properties supported by the widget in tables and marks with Y or N to indicate whether the IC
supports them or not.

Non-containerized Widget
Text

Used only for text display and does not support user input. The properties are shown in the table below.

Table 9: Text Widget Properties

Prop- Description 8762C 8762C TBDG
erty
Name Widget name. Y Y Y
Size Widget height. Y Y Y
(Height)
Size Widget width. Y Y Y
(Width)
X Horizontal coordinate relative to the parent widget. Y Y Y
Y Vertical coordinate relative to the parent widget. Y Y Y
Text Display text. Y Y Y
Dis- Long text (text content beyond the widget’s range) display mode with the following Y Y Y
play supported types.
Mode truncate: Truncated display mode;

verticalscroll: Vertical scrolling display mode;

horizontalscroll: Horizontal scrolling display mode.
Font Font setting, please refer to Font Convert Setting. Y Y Y
Font Font color setting, use RGBA. Y Y Y
Color
(RGBA)

Button

Clickable widget with text and background image. The properties are shown in the table below.

2.4. Use RVD Tool Design An Application 33

RTKIOT GUI Documentation, Release v0.0.0.1

Table 10: Button Widget Properties

Prop- Description 8762[8762C TBD!G
erty

Name Widget name. Y

Size Widget height. Y Y Y
(Height)

Size Widget width. Y Y Y
(Width)

X Horizontal coordinate relative to the parent widget.

Y Vertical coordinate relative to the parent widget.

Text Displayed text.

Text X Horizontal coordinate relative to the Button widget.
Text Y Vertical coordinate relative to the Button widget.
Display = Horizontal or Vertical display.

<
T
<

Mode
Font Font setting, please refer to Font Convert Setting. Y Y Y
Text Text color setting, use RGB. Y Y Y
Color
(RGB)
Transi- Image transition mode with the following options: N Y Y
tion normal: No effect
fade: Fade-in/out
scale: Scaling
fadeScale: Fade-in/out and scaling
Note: Set the transition mode is effective only if set the default and highlight back-
ground image, otherwise all normal.
BG Default background image. Y Y Y
Image
(De-
fault)
BG Selected/Highlight background image. Y Y Y
Image
(High-
light)
BG Background image rotation angle, range: 0~360 degree. Y Y Y
Image
Ro-
tation
Angle

2.4. Use RVD Tool Design An Application 34

RTKIOT GUI Documentation, Release v0.0.0.1

Image
Table 11: Image Widget Properties

Property Description 8762D/i 8762G/i TBDi
Name Widget name. Y Y Y
Size Widget height. Y Y Y
(Height)
Size Widget width. Y Y Y
(Width)
X Horizontal coordinate relative to the parent widget. Y Y Y
Y Vertical coordinate relative to the parent widget. Y Y Y
Image Image Path Y Y Y

Note: The image must be pre-imported into the project. Please refer to /mage

Resource Management for details.
Image Image rotation angle. Y Y Y
Rotation
Angle
Image Image horizontal scaling degree, is a multiplier/percentage. Y Y Y
Scale X For example, set scale x 0.5 means that the actual display width of the image

is half of the original image width.
Image Image vertical scaling degree, is a multiplier/percentage. Y Y Y
Scale Y

Widget that can set image. The properties are shown in the table below.

Note:

1. When exporting, the tool will convert the imported images. And the image conversion parameters can be set in
Menu Bar » Setting » Image Convert Setting, please refer to Image Convert Setting for details;

2. If the size of the imported image does not match the size of the widget, the tool doesn’t scale or crop the image.

SeekBar

Sliding widget that can respond to user swipe gesture with the widget and change the progress value. The properties are
shown in the table below.

Fig. 2: SeekBar

2.4. Use RVD Tool Design An Application 35

RTKIOT GUI Documentation, Release v0.0.0.1

Table 12: SeekBar Widget Properties

Property Description 8762D/ 8762G/ TBDj
Name Widget name. Y Y Y
Size Widget height. Y Y Y
(Height)

Size Widget width. Y Y Y
(Width)

X Horizontal coordinate relative to the parent widget. Y Y Y
Y Vertical coordinate relative to the parent widget. Y Y Y
Color(Highli Background color of partially completed part of the progress bar. N Y N
(RGBA)

Color Background color of the whole progress bar. N Y N
(RGBA)

Orienta- Widget display orientation and gesture response orientation with the following Y Y Y
tion types:

vertical/V: Vertical orientation
arc: Direction of a curve
horizontal/H: Horizontal orientation

Image SeekBar

Sliding widget with multi-images as background, and switch to different images as the user swipes. The properties are
shown in the table below.

2.4. Use RVD Tool Design An Application 36

RTKIOT GUI Documentation, Release v0.0.0.1

Table 13: Image SeekBar Widget Properties

Property

Description

8762D/8763E

8762G/8772G

Name

Size (Height)
Size (Width)
X

Degree (Start)
Degree (End)

Image Directory

Central X

Central Y

Orientation

Widget name.
Widget height.
Widget width.
Horizontal coordi-
nate relative to the
parent widget.
Vertical coordinate
relative to the parent
widget.

Start degree (Invalid
if orientation is arc).
End degree (Invalid
if orientation is arc).
Folder that contains
only the images to
be displayed on this
widget.

Notes:

1. Please sort
the images by
name;

2. When the user
swipes on the
widget, the
widget will
switch the
background
image ac-
cording to
the current
progress.

Horizontal coordi-
nate of the center of
the arc relative to the
parent widget.
Vertical coordinate
of the center of the
arc relative to the
parent widget.
Widget display ori-
entation and gesture
response orientation
with the following
types:

vertical/V: Vertical
orientation

arc: Direction of a
curve

horizontal/H: Hori-
zontal orientation

Y

Y
Y
Y

<

<<=

<

<<=

<

2.4. Use RVD Tool Design An Application

37

RTKIOT GUI Documentation, Release v0.0.0.1

Switch

Switch widget with Checked and Unchecked states. The properties are shown in the table below.

Table 14: Switch Widget Properties

Property Description 8762D/8763E 8762G/8772G TBD
Name Widget name. Y Y Y
Size (Height) Widget height. Y Y Y
Size (Width) Widget width. Y Y Y

X Horizontal coordinate relative to the parent wid- Y Y Y

get.

Y Vertical coordinate relative to the parent widget. Y Y Y
BG Image Checked state background image. Y Y Y
(Checked)

BG Image (Default) Unchecked state background image. Y Y Y

Arc

Arc widget, no gesture support yet. The properties are shown in the table below.

2.4. Use RVD Tool Design An Application

38

RTKIOT GUI Documentation, Release v0.0.0.1

Table 15: Arc Widget Properties

Property Description 8762D/8763E 8762G/8772G TBD
Name Widget name. Y Y N
Size (Height) Widget height. Y Y N
Size (Width) Widget width. Y Y N
X Horizontal coordi- Y Y N
nate relative to the
parent widget.
Y Vertical coordinate Y Y N
relative to the parent
control.
Central X Horizontal coordi- N Y N
nate of the center of
the arc relative to the
parent widget.
Central Y Vertical coordinate N Y N
of the center of the
arc relative to the
parent widget.
BG Color Arc background N Y N
color.
Cap Mode Arc cap N Y N
mode,
the fol-
lowing
options
are sup-
ported:
round/butt/squa:
Degree (End) End degree of arc. N Y N
Degree (Start) Start degree of arc. N Y N
Radius Radius of arc. N Y N
Stroke Width Width of arc stroke. N Y N

Container Widget

Screen

Screen widget, corresponding to the physical screen, is the root widget of a GUI project. The properties are shown in the

table below.

Table 16: Screen Properties

Property

Description

8762D/8763E 8762G/8772G TBD

Name

Widget name.

Size (Height) Widget height.
Size (Width) Widget width.

X
Y

Horizontal coordinate, always 0.
Vertical coordinate, always 0.

o

KRR

Mo

2.4. Use RVD Tool Design An Application

39

RTKIOT GUI Documentation, Release v0.0.0.1

Note: Only ‘Name’ property can be modified.

TabView and Tab

With the Tab widget as a child widget, it supports up/down/left/right swiping to switch among Tabs. The properties of
TabView and Tab are shown in the table below.

Fig. 3: TabView and Tabs

Table 17: TabView Properties

Prop- Description 8762D/8" 8762G/8 TBD
erty

Name Widget name. Y Y Y
Size Widget height. Y Y Y
(Height)

Size Widget width. Y Y Y
(Width)

X Horizontal coordinate relative to the parent widget, always 0. Y Y Y

Y Vertical coordinate relative to the parent widget, always 0. Y Y Y
Tran- Tab transition mode with the following supported types: N Y Y

sition normal: No effect
fade: Fade-in/out
scale: Scaling
fadeScale: Fade-in/out and scaling

Table 18: Tab Properties

Property Description 8762D/8763E 8762G/8772G TBD
Name Widget name. Y Y Y
Size (Height) Widget height. Y Y Y
Size (Width) Widget width. Y Y Y
X Horizontal coordinate relative to TabView widget, always Y Y Y
0.

Y Vertical coordinate relative to TabView widget, always 0. Y Y Y
Index(X- Horizontal index of Tabs in TabView. Y Y Y
Axis)

Index(Y- Vertical index of Tabs in TabView. Y Y Y
Axis)

Note:

1. TabView width and height cannot be modified, defaulting to the Screen’s width and height;
2. TabView horizontal and vertical coordinates cannot be modified, always being 0;
3. TabView can only be used as a child of the Screen widget;

4. TabView’s child widgets can only be Tabs;

2.4. Use RVD Tool Design An Application 40

RTKIOT GUI Documentation, Release v0.0.0.1

5. Tab’s width and height cannot be modified, defaulting to TabView’s width and height;

6. Tab’s horizontal and vertical coordinates cannot be modified and are always O.

Page
Container widget with scrollable content.

Table 19: Page Properties

Property Description 8762D/8763E 8762G/8772G TBD

Name Widget name. Y Y Y

Size (Height) Widget height. Y Y Y

Size (Width) Widget width. Y Y Y

X Horizontal coordinate relative to the parent widget. Y Y Y

Y Vertical coordinate relative to the parent widget. Y Y Y
Note:

1. Page only supports vertical scrolling;

2. The width and height of the Page widget only define the area of the interface that can respond to a swipe gesture.
Whether scrolling is allowed depends on whether or not the child widget added to it is outside the scope of the
screen.

Win

Within the area defined by Win width and height, it can respond to various gestures, including click, long click, press,
press release, and swipe. The properties are shown in the table below.

Table 20: Win Properties

Property Description 8762D/8763E 8762G/8772G TBD
Name Widget name. Y Y Y
Size Widget height. Y Y Y
(Height)

Size Widget width. Y Y Y
(Width)

X Horizontal coordinate relative to the parent widget. Y Y Y

Y Vertical coordinate relative to the parent widget. Y Y Y
Hidden Indicates whether Win and its child widget need to be hid- Y Y Y

den.

2.4. Use RVD Tool Design An Application 41

RTKIOT GUI Documentation, Release v0.0.0.1

Design View/Canvas

Users can drag and drop widgets from the Toolbox panel into the Design View, adjust the widgets’ layout, and set properties
to design a graphical interface that can be rendered in the Realtek ICs.

Fig. 4: Design View

TabView - Create/Delete/Insert Tab

Drag and drop the TabView widget from the Toolbox into the Design View, then a TabView that contains only a home
tab (coordinates (0,0)) is created, as shown in the figure below.

Fig. 5: Create TabView

Create Tab

New tabs can be created by clicking the buttons around the Design View.

Note:
1. If idx is O, the up and down button is enabled;
2. If idy is O, the left and right button is enabled.

Delete Tab

Select the tab to be deleted, click Edit » Delete on the menu bar or press the Delete key on the keyboard. Then double-
check if the deletion is intended.

Fig. 6: Delete Tab Double-Check

Insert Tab

Currently, tab insertion is only supported by modifying the coordinates of an existing tab and creating a new one.
For example, if a tab needs to be inserted between tabs with coordinates (1, 0) and (2, 0), the steps are as follows.
1. Increase the idx of Tab (2, 0) and the tabs to its right by 1, as shown in the figure below;
2. Switch to Tab (1, 0) and click to create the new Tab (2, 0).

Fig. 7: Tab Insertion Position

Fig. 8: Modify Existing Tab Index X and Y

Fig. 9: Insert Tab

2.4. Use RVD Tool Design An Application 42

RTKIOT GUI Documentation, Release v0.0.0.1

TabView Overview Window

Please click to show the TabView Overview Window.

Note:
1. The highlighted Tab in the Overview Chart indicates the Tab that is currently being edited in Design View;

2. The Overview Chart labels each Tab with its coordinates. When simulated or rendered in ICs, the Tab with coor-
dinates (0,0) is displayed on the Home page, and users can swipe up/down/left/right to display other Tabs.

Fig. 10: TabView Overview Chart

Fig. 11: TabView Overview Chart

Zoom of Design View

There are 3 ways to zoom in the Design View.
1. Press the Ctrl key and wheel mouse;
2. Click the - and + buttons;

3. Drag the slider bar.

Fig. 12: Zoom of Design View

Property View

Selecting a widget in the Widget Tree or Design View exposes all of the widget’s property values, which users can modify
as needed.

Fig. 13: Property View

Widget Tree
The Widget Tree is used to present to the users the parent/child/sibling relationship of the currently laid out widgets. And
we have the following convention here.

1. The child widget layer is on top of the parent widget layer, i.e., when the parent and child widget overlap, the child
widget will cover the parent widget;

2. The layer of sibling widgets is related to the order in which the widgets are added, with widgets added first at the
bottom and widgets added later at the top.

The figure shows all the child widgets of the Home tab and Lamp tab, where the Home tab has only one Image child
widget for setting the background, and the Lamp tab contains an Image widget and several Switch widgets.

Fig. 14: Home Tab

2.4. Use RVD Tool Design An Application 43

RTKIOT GUI Documentation, Release v0.0.0.1

Fig. 15: Lamp Tab

Widget Tree supports the following operations.

1. Select widget: If a widget is selected on the Widget Tree, the corresponding widget in the Design View focuses and
its properties are shown on Property View;

2. Modify the parent-child relationship: Select a widget on the Widget Tree (except Tab/TabView/Screen) and drag-
and-drop it on the target widget item. Then the widget will be a child widget of the target widget;

3. Modify widget layers: Select a widget on the Widget Tree (except Tab/TabView/Screen) and drag-and-drop it to
the upper or lower edge of the target widget item. Then on the Design View, the widget will be placed over or
under the target widget;

4. Lock widgets: Click the button and lock the widget/widgets.

1. If the lock button of the screen is clicked, all the screen’s child widgets will be locked, and the user could not
drag or resize the widgets on Design View;

2. If the lock button of the Tab is clicked, all the tab’s child widgets will be locked, and the user could not drag
or resize the widgets on Design View.

Fig. 16: Un-Locked

Fig. 17: Locked

2.4.3 Resource Management

Only pre-imported image and font files can be referenced by the GUI project. This chapter focuses on how to manage
image and font resources. The image and font explorer is located directly below the design view, as shown in the figure
below.

Fig. 18: Image Resource Management

Font Resource Management
Image Resource Management

Click to bring up the Image Management view.

Image Resource Management Window

2.4. Use RVD Tool Design An Application 44

RTKIOT GUI Documentation, Release v0.0.0.1

Add Images

Images can be added to the GUI project by following the process below.

1. Click to create a new image folder and enter the folder name. The created folder is located in the Resource\

image folder under the GUI project directory.

Fig. 19: Create Image Folder

2. Select the created image folder and click to select images (multiple selections are possible) to add them to the folder.
As shown in the figure below, the images are copied to the Resource\image\home folder after the addition

is completed.

Fig. 20: Select Image Folder

Fig. 21: Select Images

Fig. 22: Add Image(s)

Remove Images/Image Folder

Select the image or image folder to be removed and click .

Rename Image Folder

Select the image folder, double-click, and enter a new name.

Preview Images

Select the image folder and all images in this folder will be displayed in the right area.

Fig. 23: Preview Images

Refresh

If the user locally operates the image resources, not via Tool, click to refresh.

Note: Not recommended.

2.4. Use RVD Tool Design An Application

45

RTKIOT GUI Documentation, Release v0.0.0.1

Font Resource Management

Add Third-Party Font

If a third-party font (. tt) is needed, click to import the resource first; otherwise, the locally installed font will be used.

Fig. 24: Font Management

Remove Third-Party Font

Select the font to be removed and click .

2.4.4 Menu Bar
File
Start Page

To close the current project and open an existing project or create a new project, open the Start Page by clicking File »
Start Page. Click Open Project or select a . rtkprj and double-click to open the existing project, or click Create Project
to create a new project. Please refer to How to Create Project and How to Open Project.

Fig. 25: Start Page

Save

Save all the UI changes of the project, the shortcutis Ctrl + S.

Exit Save

A prompt window will pop up when closing the project, as shown below. Please click OK to save, or the changes will be
abandoned.

Fig. 26: Close and Save Project

Edit

Copy/Paste

1. Click Edit » Copy to copy the selected widget, the shortcutis Ctrl + C.

2. Click Edit » Paste to create a copy of the selected widget on the Design View, the shortcut is Ctrl + V.

2.4. Use RVD Tool Design An Application 46

RTKIOT GUI Documentation, Release v0.0.0.1

Delete

Click Edit » Delete to delete the selected widget, or press the Delete key on the keyboard.

Undo/Redo

Undo: Undo the change made to the widget, the shortcut is Ctrl + Z. Redo: Do the change to the widget again, the
shortcutis Ctrl + Y.

Convert Project

The Convert Project window is used to convert the IC type and screen size/resolution for the current project.

Fig. 27: Convert Project

Project Name Modification

The Project Name window is used to modify the current project name. Please enter the new name in the input box.

Fig. 28: Project Name

Setting
Image Convert Setting

The images must be converted to be displayed correctly on the IC, so users need to set the correct convert parameters.
All the optional parameters are shown in the figure below.

Fig. 29: Image Convert

The parameters are described as follows.

Scan Mode

The available options are shown in the table.

Table 21: Scan Mode Options

Scan Mode Description
Horizontal Horizontal scan.
Vertical Vertical scan.

2.4. Use RVD Tool Design An Application 47

RTKIOT GUI Documentation, Release v0.0.0.1

Color Space

Color space of Image, the available options are shown in the table below.

Table 22: Color Space Options

Color Description
Space
RGB565 16 bit RGB mode
Bit 4:0 represents blue; Bit 10:5 represents green; Bit 15:11 represents red.
RTKARGB 16 bit ARGB mode
Bit 4:0 represents blue; Bit 9:5 represents green; Bit 14:10 represents red; Bit 15 represents alpha.
RTKR- 16 bit RGAB mode
GAB Bit 4:0 represents blue; Bit 5 represents alpha; Bit 10:6 represents green; Bit 15:11 represents red.
RGB 24 bit RGB mode
Bit 7:0 represents blue; Bit 15:8 represents green; Bit 23:16 represents red.
RGBA 32 bit RGBA mode
Bit 7:0 represents blue; Bit 15:8 represents green; Bit 23:16 represents red; Bit 31:24 represents alpha.
BINARY 2-value (0 or 1) image.
Compress

If checked Compress, please set the compression parameter as needed. The optional Compress Mode is as follows:

1. RLE

Run-Length Encoding, a lossless compression algorithm.

If selecting RLE as the Compress Mode, RLE Level and RLE Run Length parameters are mandatory to set.

Fig. 30: RLE Level - Level 1

Fig. 31: RLE Level - Level 2

Table 23: RLE Level

RLE Level Description

Level 1 1-level compress.
Level 2 2-level compress, secondary compress based on the 1-level compress.

Table 24: RLE Run Length

RLE Run Length Description

Byte_1 1 byte, Maximum 255.
Byte_2 2 bytes, Maximum 255.

Note: RLE Run Length: Maximum length of duplicate characters allowed per stroke (Run) during compression.

2.4. Use RVD Tool Design An Application 48

RTKIOT GUI Documentation, Release v0.0.0.1

2. FastLz

A dictionary-and-sliding-window based lossless compression algorithm for compressing data with a large number
of repetitive values.

3. YUV_Sample_Blur
A lossy compression algorithm combining YUV sampling and blurring.
YUV Sample: Keep the luminance information of the image and only sample the chrominance information.

Blur: Discard the lower bit of each byte after YUV sampling to achieve the purpose of data compression.

Table 25: YUV Sample Mode

YUV Sample Description

Mode

YUV444 4 pixel data are sampled to 4 Y, 4 U and 4 V, i.e., each Y corresponds to a set of UV components,
fully preserving the YUV data.

YUV422 Every 4 pixel data are sampled to 4 Y, 2 U and 2 V, i.e., every 2 Y corresponds to a set of UV
components, data size is 75% of the original.

YUV411 Every 4 pixel data are sampled to 4 Y, 1 U and 1 V, i.e., every 4 Y corresponds to a set of UV
components, data size is 50% of the original.

YUV422 Y - luminance; V - chrominance.

Table 26: Blur Mode

Blur Mode Description

Bit0 Saving without discarding lower bit.

Bitl Each byte discards bitO (preserve [bit7:bitl]).

Bit2 Each byte discards [bit1:bit0] (preserve [bit7:bit2]).
Bit4 Each byte discards [bit3:bit0] (preserve [bit7:bit4]).

4. YUV_Sample_Blur+FastLz
The algorithm combines YUV_Sample_Blur and FastLz.

Font Convert Setting

Include Bitmap Fonts and Vector Fonts. Fonts supported by Realtek series ICs are shown in the table below.

Note: A Font Convert Setting should be created, otherwise selecting a font for the text-type widget in the Property View
is not possible.

Table 27: Supported Fonts Type
Font 8762D/8763E 8762G/8772G TBD

Vector N N Y
Bitmap Y Y Y

To use Bitmap Fonts, set the following parameters.

2.4. Use RVD Tool Design An Application 49

RTKIOT GUI Documentation, Release v0.0.0.1

Fig. 32: Convert Settings of Bitmap Fonts

The following table lists the description of each parameter.

Table 28: Font Convert Parameters

Pa- Description
ram-

e_

ters

Font User-defined font setting name. Please make sure that you create a different font setting name each time.
Set-
ting
Name
Font Font size.
Size
Bold Bold or not.
Italic TItalic or not.
Ren- Bit number used to represent a pixel in the converted . bin file.
der
Mode
Scan There are two ways to scan when saving . bin.
Mode H: Horizontal scanning
V: Vertical scanning
In- Index method of the converted .bin’s re-indexing area.
dex
Methe
Code Support multiple code pages.
Page
Text The types are as follows.
Type Range: If the text’s Unicode range can be pre-determined, please select this type and enter the range in the
Range TextBox. Multiple ranges are supported, please set each range on a separate line.
Note: Only the characters within the ranges will be converted and saved to . bin file, which can save storage
space.
Random: If the text’s Unicode range cannot be pre-determined, please select this type.
Note: All characters of the Font will be converted and saved to . bin file.

Vector Font parameters are shown in the figure below.

Fig. 33: Vector Font Parameters

Export
If you have finished designing the GUI project and want to program it to the IC, please click Export, then the Tool performs
the following actions:

1. Image convert

2. Font convert

3. Pack the .xml, . js, images and fonts into the output . bin.

2.4. Use RVD Tool Design An Application 50

RTKIOT GUI Documentation, Release v0.0.0.1

When the above actions are done, a message box pops up.

Fig. 34: Output .bin

The . bin can be programmed into your IC.

Simulate

Simulate the project on UL

Note: When simulating the project for the first time, please click Export before clicking Simulate. Then, there is no need
to click Export again if no image or font setting is modified.

Fig. 35: Running Simulator

2.4.5 Quick Start to Tutorials

How to Create Project

Fig. 36: Start Page

Double click and run RVisualDesigner.exe, and then configure the project step by step (1~4) and click Create
Project (5). After creation, the GUI design window pops up. The left side is the component area, the center is the design
area, and the right side is the widget property setting area.

Fig. 37: GUI Design

Note: The newly created project file is located in the project folder under the Solution Folder. There is an example as
shown in the figure below.

Fig. 38: Project Folder

After dragging and dropping a widget on Design View, and clicking File » Save or pressing Ctrl + S, the . rtkui file
will be created.

Fig. 39: .rtkui File

2.4. Use RVD Tool Design An Application 51

RTKIOT GUI Documentation, Release v0.0.0.1

How to Write Javascript Code

After the project is created, the XXX . j S file is created. The XXX . j S file is empty, please code here to implement the

widgets’ event callback.

How to Open Project

Fig. 40: Open Project

There are two ways to open a project.

1. Click Open Project and select a . rtkprj file.

Fig. 41: Open Project via Selecting .rtkprj

2. Selecta . rtkprj in the Recent Project area.

If the project is listed in the Recent Project area, a message window pops up.

Fig. 42: Message Box

How to Open/Close Project

Click File » Start Page on Menu Bar.

How to Export/Pack Project

Fig. 43: Export

Click Export on Menu Bar. The output is shown in the figure below.

Fig. 44: Export OK

How to Simulate

Fig. 45: Simulate

Click on the Simulate button in the menu bar.

2.4. Use RVD Tool Design An Application

52

RTKIOT GUI Documentation, Release v0.0.0.1

2.4.6 GUI Demo Project

There is a Demo in RVisualDesigner-vx.Xx.X.X.zip.
The folder - 454x454 contains a project with resolution 454*454.
The folder - 480x480 contains a project with resolution 480*480.

Fig. 46: Demo

Please follow the steps to demo the project.
1. Open the project according to the screen size/resolution of your IC;

2. Check the IC type by clicking Edit » Convert Project on the Menu Bar. Please refer to Convert Project for details. If
the current IC type of the project does not match your IC, please select the target IC type, enter the target resolution,
and click Convert.

Fig. 47: Convert Project

3. Click Export on the Menu Bar and wait until the export ok/fail message box pops up.
Fig. 48: Output .bin

Program the output . bin into your IC.

2.4.7 JavaScript Syntax
Win
* This is a container widget.
* Operations on the window widget will affect the widgets nested in the container.

* Hiding the window will hide the nested widgets.

* When the window makes graphic transformations, such as panning and scaling, the nested widgets will make con-
sistent transformations.

 This widget can monitor multiple gestures.

Hide A Window

* This win variable is assigned the win tag 'heat win'’s handle.
* The variable hid is assigned the handle of the hidden attribute of the win tag.

* The value of the hidden attribute is set to 'hidden' to achieve hiding.

win.getElementById('heat win') //win will become a handle for heat win
hid = win.getAttribute("hidden") //get attribute handle hid
console.log(hid)

if ('hid) {

(continues on next page)

2.4. Use RVD Tool Design An Application 53

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
win.setAttribute("hidden", "hidden");

Listen to Gestures

* The win.onPress function enables the win widget to monitor the event of the finger touching the screen. If the
finger touches the screen within the area of the window, the parameter function will be executed.

« The win.onRelease function enables the win widget to monitor the event of the finger leaving the screen.
 This winNromalOnPressFunc function will be executed when the finger touches the screen.

» This winNromalOnReleaseFunc function will be executed when the finger leaves the screen.

win.getElementById('tab7Win')

function winNromalOnPressFunc(params) {
console.log('winNromalOnPressFunc')

1

win.onPress(winNromalOnPressFunc)

function winNromalOnReleaseFunc(params) {
console.log('winNromalOnReleaseFunc')
}

win.onRelease(winNromalOnReleaseFunc)

Swap Windows

» The implementation logic is that clicking the current window will hide the current window and display another
window.

¢ Click to swap windows between 'cool win' and 'heat win'.
e The win.onClick function enables the win widget to monitor the event of the finger clicking the screen.

* This function win.removeAttribute is used to remove an attribute of the win tag. When the hidden
attribute is removed, the widget corresponding to the win tag will be displayed.

¢ On a touch device, a click event is typically triggered when a user touches an element and then lifts their finger in
a short time within the win area.

win.getElementById('cool win')

function hideCool(params) {
console.log('hideCool")
win.getElementById('cool win')
win.setAttribute("hidden", "hidden");
win.getElementById('heat win')
win.removeAttribute("hidden")

}

win.onClick(hideCool)

win.getElementById('heat win')

function hideHeat(params) {
console.log('hideHeat")
win.getElementById('heat win')
win.setAttribute("hidden", "hidden");

(continues on next page)

2.4. Use RVD Tool Design An Application 54

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

win.getElementById('cool win')
win.removeAttribute("hidden")

}

win.onClick(hideHeat)

API

getElementById : function (win name : string) {}

onClick : function (callback func) {}

onRight : function (callback func) {}

onLeft : function (callback func) {}

onUp : function (callback func) {}

onDown : function (callback func) {}

onPress : function (callback func) {}

onRelease : function (callback func) {}

onHold : function (callback func) {}

getAttribute : function(attributeName : string) {}, //return attribute value //
—Ssupport "hidden"

removeAttribute : function (attribute : string) {} //support "hidden"
setAttribute :function(attributeName : string, value : any) {}, //support "hidden"

Button

Monitor Button Press Event

* Can be used to develop button press highlight effects or buttons that require quick response.

« Listen to press gesture, the function iconNromalOnPressFunc will trigger when finger touches screen within
the area of the button.

icon.getElementById('iconNormal")

function iconNromalOnPressFunc(params)
console.log('iconNromalOnPressFunc

{
")

}

icon.onPress(iconNromalOnPressFunc)

API

getElementById : function (win _name : string) {},
onClick : function (callback func) {},

onPress : function (callback func) {},

onRelease : function (callback func) {},

onHold : function (callback func) {},
getChildElementByTag : function (tag : string) {},
write : function (text : string) {},

2.4. Use RVD Tool Design An Application 55

RTKIOT GUI Documentation, Release v0.0.0.1

Text

Change Text Content

* Using textbox.write function.

textbox.getElementById('tablOtextl")
textbox.write('progress: '+seekbar.progress())

API

getElementById : function (win name : string) {},
write : function (text : string) {},
setPosition : function (position : object) {}, //var position={x:0,y:0}

Seekbar

Display Current Progress

* Drag the progress bar and then the text shows the current progress.
* Function seekbar.progress can read and write the progress.

* Function seekbar.onPressing will listen for events where your finger is kept pressed on the screen. This
parameter function will be executed in each frame, while the finger is in contact with the screen.

seekbar.getElementById('tabl0Seekl")

function seekbarOnPress(params) {
console.log('seekbarOnPress"')

}

seekbar.onPress(seekbarOnPress)

function seekbarOnrelease(params) {
console.log('seekbarOnrelease')

}

seekbar.onRelease(seekbarOnrelease)

function seekbarOnPressing(params) {
console.log('seekbarOnPressing')
textbox.getElementById('tablOtextl")
textbox.write('progress: '+seekbar.progress())

}

seekbar.onPressing(seekbarOnPressing)

A Seekbar Animation That Increases From 0 to 100%

» The seekbar will display an animation that continuously progresses from start to finish and then loops back to the
start, creating a perpetually moving progress bar.

« This function seekbar.setAnimate sets the frame animation of the seekbar, and the parameters passed are
the frame animation callback and animation duration properties.

* Define an object curtainAnimateTiming to specify the timing properties for an animation. duration sets
the duration of one cycle of the animation in milliseconds. iterations is the number of times the animation
should repeat, and -1 indicates the animation should repeat indefinitely.

2.4. Use RVD Tool Design An Application 56

RTKIOT GUI Documentation, Release v0.0.0.1

var curtainAnimateTiming = {

duration: 2000, // The duration of the animation in milliseconds (2000ms = 2,
—seconds)
iterations: -1, // The number of times the animation should repeat

// -1 indicates the animation should repeat indefinitely

e
var curtain open = 0;
seekbar.getElementById('curtain bar')
function curtainFrame(params) {

animate= seekbar.animateProgress()

seekbar.setAttribute("progress", animate)
}
seekbar.setAnimate(curtainFrame, curtainAnimateTiming)
seekbar.palyAnimate()

API

getElementById : function (win name : string) {},

progress : function (progressToSet : number){},//get or set progress//return progress
onPress : function (callback func) {}, //gesture press

onPressing : function (callback func) {},//gesture pressing

onRelease : function (callback func) {},//gesture release

setAnimate : function (frameCallback : function, config : object) {},// frameCallback,
—function will be executed once every frame // var curtainAnimateTiming = {duration: ,
2000, iterations:1,}

setAttribute :function(attributeName : string, value : any) {}, //support "hidden"
getAttribute : function(attributeName : string) {}, //return attribute value //
—support "hidden"

palyAnimate : function () {}, //Start animation

Switch

Listen to 2 Gestures
» The switch widget has two events, namely, being triggered by being turned on and being triggered by being turned
off.
* This function SW.0n0n is used to register the turned on event.

* This function sw.onOTf is used to register the turned off event.

sw.getElementById('tab8Switch')

function swOnOnFunc(params) {
console.log('swOnOnFunc')

}

sw.onOn (swOnOnFunc)

function swOnOffFunc(params) {
console.log('swOnOffFunc")

}

sw.on0ff (swOnOffFunc)
sw.turnOn();

2.4. Use RVD Tool Design An Application 57

RTKIOT GUI Documentation, Release v0.0.0.1

Turn on A Led (P1_1)

var P1 1 9

var LED1 new Gpio(P1 1, ‘out');

function ledlOnFunc(params) {
console.log('ledlOnFunc")
LED1.writeSync(0)

}
sw.getElementById('living switch')
sw.turnOn()

* This is the writeSync’s control gpio led implementation for RTL87X2G.
* First get gpio value and direction value, then use specify driver api to operate led.

» Refer to onoff npm package usage for more information.

DECLARE_HANDLER (writeSync)
{
gui log("enter writeSync:%d\n", args[0]);
if (args cnt >= 1 &% jerry value is number(args[0]))

{

int write value = jerry get number value(args[0]);
int gpio = -1;
jerry value t vl;
jerry value t v2;
vl = js get property(this value, "gpio");
v2 = js get property(this value, "direction");
gpio = jerry get number value(vl);
jerry release value(vl);
char *direction = js value to string(v2);
jerry release value(v2);
int mode = 0;
#ifdef RTL8762G

if (!strcmp(direction, "out"))

{ mode = PIN MODE OUTPUT;

ilse if (!strcmp(direction, "in"))
{ mode = PIN MODE INPUT;

%f (gpio >= 0)

gui_log("gpio%d, %d, %d", gpio, mode, write_value);
drv_pin mode(gpio, mode);
drv_pin_write(gpio, write_value);

2.4. Use RVD Tool Design An Application

58

https://www.npmjs.com/package/onoff#usage

RTKIOT GUI Documentation, Release v0.0.0.1

API

getElementById : function (win name : string) {},
onOn : function (func) {},

onOff : function (func) {},

onPress : function (func) {},

turnOn : function (func) {},//turn on the switch
turnOff : function (func) {},//turn off the switch

Image

API

getElementById : function (widget name : string) {},

rotation : function (degree:number, centerX:number, centerY:number) {},
scale : function (scaleRateX:number, scaleRateY:number) {},

setMode : function (modeIndex:number) {},

App
AP

open : function (appXML : string) {},
close : function () {},

Progressbar

API

getElementById : function (widget name : string) {},
progress : function (progressToSet : number):{},//get or set progress//return progress

Tab

API

getElementById : function (widget name : string) {},

jump : function (tabIndex : number) {}, //jump to horizontal tab

OnChange : function (func) {},//Listen for events where the index value changes
getCurTab : function () {},//return x,y,z property

2.4. Use RVD Tool Design An Application 59

RTKIOT GUI Documentation, Release v0.0.0.1

2.4.8 XML Syntax

Element

 Element corresponding widget.
* Element’s attributes corresponding widget’s attributes (0 value can be ignored).

 Text content is the widget instance’s name.

[<type al="xx" a2="xx" a3="xx" a4="xx">name</type>

Nesting

The nesting structure of elements is consistent with the nesting structure of actual widgets.

<fatherType al="xx" a2="xx" a3="xx" a4="xx">fatherName

<childType al="xx" a2="xx" a3="xx">childNamel</childType>
<childType al="xx" a2="xx" a3="xx">childName2
<childType al="xx" a2="xx" a3="xx">childName3</childType>
<childType al="xx" a2="xx" a3="xx">childName4</childType>
</childType>
</fatherType>

2.4. Use RVD Tool Design An Application 60

RTKIOT GUI Documentation, Release v0.0.0.1

Specifications

Ele- At- At- At- At At- At At- At At At- At At At At- At At- At-
ment ftribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tribu tributes17

win X y w h hid-

den
textbor x y w h text font font- color mode¢ in-
Size putat
img X y w h scale sca- ro- blenc opac file folde du-
leY ta- Mod ity ra-
tio- tion
nAn-
gle
seek- x y w h folde pic- ori- cen- cen- start- end- re- blenc opac
bar ture en- tralX tralY De- De- verse Mod ity
ta- gree gree
tion
tab- X y w h tran-
view si-
tion
tab X y w h idx idy
cur- X y w h tran-
tain- si-
view tion
cur- X y w h scop¢ ori- tran-
tain en- si-
ta- tion
tion
icon X y w h font pic- high- font- font- text textX textY pic- pic- mod¢ blenc opac-
ture light- Colo: Size ture> ture) Mod: ity
Pic-
ture
script file
switch x y w h pic- high- clicke clicke pic- pic- blenc opac: mode du-
ture light- Pic- High ture> tureY Mod: ity ra-
Pic- ture light- tion
ture Pic-
ture
page x y w h
screen w h
grid X y rowD col- row- col-
ber Num Gap Gap
ber
gallery x y w h folde main cen- cen- sideS side- blenc opac
terBg ter- PosP Mod: ity
Per- cent
cent
ani- type from to dur re-
mate- peat-
Trans- Cour
form
mo- X y w h Switc switc switc
tor- Clos¢ Paust
ized-
2@urUse RVD Tool Design An Application 61
tain
key- ime

board

RTKIOT GUI Documentation, Release v0.0.0.1

Attribute Description Values
X Relative left coordinate number
y Relative top coordinate number
w Width number
h Height number
hidden Hidden hidden
text Text string string
font Font file file path
fontSize Font size number
color RGB hex color #RRGGBB
mode(textbox) Text effect truncate, verticalscroll, horizontalscroll, transition
mode(icon) Highlight effect on press normal, fade, scale, fadeScale, array
mode(switch) Highlight effect on press array
inputable Soft keyboard boolean
scaleX Horizontal scaling ratio number
scaleY Vertical scaling ratio number
rotationAngle Rotation angle number
blendMode Image blend mode imgBypassMode, imgFilterBlack, imgSrcOverMode, imgCov-
erMode
opacity Opacity from O to 255 number
file File path string
folder Folder path string
duration Animation duration (millisec- number
onds)
picture Image file path string
orienta- Orientation vertical, V, horizontal, H, arc
tion(seekbar)
orienta- Direction middle, up, down, left, right
tion(curtain)
centralX Arc center x-coordinate number
centralY Arc center y-coordinate number
startDegree Arc starting angle number
endDegree Arc ending angle number
transition Transformation effect normal, fade, scale, fadeScale
idx Horizontal index number
idy Vertical index number
scope Range (from O to 1) number
highlightPicture =~ Highlight image file path string
fontColor RGB hex color #RRGGBB
textX Relative x-coordinate of text number
textY Relative y-coordinate of text number
pictureX Relative x-coordinate of im- number
age
pictureY Relative y-coordinate of im- number
age
rowNumber Number of rows number
colNumber Number of columns number
rowGap Row spacing number
colGap Column spacing number
mainBg Main background image file string

path

continues on next page

2.4. Use RVD Tool Design An Application

62

RTKIOT GUI Documentation, Release v0.0.0.1

Table 29 - continued from previous page

Attribute Description Values
centerBg Center background image file string
path
centerPercent Center area percentage number
sideScale Default scaling ratio for side number
images
sidePosPercent Side image position percent- number
age
type(animateTrans Animation type rotate
from Starting value of animation number
to(animateTransfo End value of animation number
dur Animation duration number
repeatCount Number of animation repeti- number
tions
switchOpen Motorized curtain open button string
name
switchClose Motorized curtain close button ~ string
name
pauseOpen Motorized curtain pause but- string
ton name
ime Input method null, pinyin
type(onClick) Behavior type triggered by jump, control
click event
to(onClick) Action target light, multiLevel
id1 Main parameter number
id2 Secondary parameter number
Example
Win
<win
x="0"
y="0"
w="480"
h="480">cool win
</win>
Img
<img
x="80"
y="70"
w="303"
h="239"

opacity="255"
file="app/box/resource/new folder/aa2.bin"
blendMode="imgFilterBlack"
rotationAngle="0"

(continues on next page)

2.4. Use RVD Tool Design An Application

63

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

scalex="1"
scaleY="1">image3

2.4.9 Middleware

RVD exports the SaaA package. The firmware needs to parse and play it.

Package

Resource XML JavaScript

Pictures and Describes the initial nested tree struc- Customized behaviors, such as triggering behaviors of wid-
fontfiles, etc. ture and specific parameters of the wid- get gesture events, peripheral operations, printing logs, etc.
get

* Packages are in the root/app folder of File system image, and a launcher in firmware will iterate through these
packages and set a start button on the screen for each package. Click the button to start the corresponding package.

Launcher

* The implementation of the launcher is in this file realgui\SaaA\frontend launcher.c.

* Ttuses a grid widget to layout the apps’ button. Then it iterates the app folder, to find all XML files, which represent
apps.

 The launcher gets the title and icon of the APP, and use a button widget to display them. The click event of the
registration button is to start the app.

XML

» The xml file in the APP package describes the initial nested tree structure and specific parameters of the widget.

 Using realgui\3rd\ezXML to convert xml to C language data format. Please refer to ezXML SourceForge
for details.

* The implementation of the xml parser is in this file realgui\DOM\XML DOM. c. You can read the syntax
description on the XML syntax page.

* According to the syntax protocol, this function foreach create uses a recursive strategy to traverse each tag
of xml and map the tag to the widget, configure the tag’s attributes to the widget.

 After the xml traversal is completed, a C-APP has actually been created in the firmware, which is no different from
the result of directly using the C-APP api.

¢ Then the JavaScript file mentioned in xml will be executed.

2.4. Use RVD Tool Design An Application 64

https://ezxml.sourceforge.net/

RTKIOT GUI Documentation, Release v0.0.0.1

JavaScript
* JavaScript describes Customized behaviors, such as triggering behaviors of widget gesture events, peripheral op-
erations, printing logs, etc.
* Based on JerryScript engine on realgui\3rd\ js for common syntax. Please refer to JerryScript for details.

* The implementation of the JavaScript parser is files starting with js in this folder realgui\SaaA. You can read
the syntax description on the JavaScript syntax page.

« DECLARE_HANDLER is used to define a function as a C language implementation of a JavaScript function.

« REGISTER METHOD and REGISTER METHOD NAME are used to add a function to a javascript object, so you
can call it in script.

* In a javascript file, there are some variable definitions, function definitions, and function calls. When the app starts,
as mentioned above, the JavaScript file will be executed at the end of the XML parsing, and the function calls in it
will be executed, mainly some initialization behaviors and the registration of event listeners.

¢ The callback functions of those events will not be executed until the event occurs.

Example

Progressbar API

//Read and write the progress value of a progressbar tag called 'tag name'
progressbar.getElementById('tag name')
var progress = progressbar.progress(0.7)

Define A Progressbar Object

In fact, this object is added to the global object. Using property of the global object does not require explicitly calling the
global object.

jerry value t progress = jerry create object();
js_set property(global obj, "progressbar", progress);

Add 2 Functions to The Progressbar Object

REGISTER METHOD (progress, progress);
REGISTER METHOD (progress, getElementById);

Define 2 Functions

e The progress is used to write and read the progressbar’s progress.

¢ Input formal parameters are in the array args. The first in it is the progress number. If this parameter exists,
which means that the progress needs to be set. Using jerry get number value() to convert javascript
parameter to ¢ language variable.

* The return value is the progress you want to get, using jerry create number to convert ¢ language variable
to javascript variable. By the way, the form of these javascript variables in C language is an index of an unsigned
integer.

2.4. Use RVD Tool Design An Application 65

https://jerryscript.net/

RTKIOT GUI Documentation, Release v0.0.0.1

DECLARE_HANDLER (progress)

{
gui obj t *obj = NULL;
jerry get object native pointer(this value, (void *)&obj, NULL);
if (args_cnt >= 1 && jerry value is number(args[0]))
{
gui progressbar set percentage((void *)obj, jerry get number value(args[0]1));
}
float per = gui progressbar get percentage((void *)obj);
return jerry create number(per);
}

» The getElementById is used to get the tag handle, refer to getElementByld on MDN for more usage.

« Input formal parameter is the tag’s specified name. Using js value to string to convert JS form name to
C form char array, and get the pointer handle, and assign value to tag. It is a little different from standard function
definitions, which return the new instantiate tag.

DECLARE HANDLER(getElementById)
{
if (args _cnt !'= 1 || !jerry value is string(args[0]))

{

}

jerry value t global obj =
jerry value t app_property
gui _app_t *app = NULL;
jerry get object native pointer(app _property, (void *)&app, NULL);
gui obj t *widget = NULL;

char *a = js value to string(args[0]);

gui obj tree get widget by name(&app->screen, a, &widget);

gui free(a);

jerry set object native pointer(this value, widget, NULL);

jerry release value(global obj);

jerry release value(app _property);

return jerry create undefined();

return jerry create undefined();

jerry get global object();
= js_get property(global obj, "app");

Light Control

This page shows how the UI switch corresponds to the peripheral switch.

//I0 P1 1 is set to low level
var P1 1 =9

var LED1 = new Gpio(P1 1, ‘'out');
LED1.writeSync(0)

2.4. Use RVD Tool Design An Application 66

https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById

RTKIOT GUI Documentation, Release v0.0.0.1

Light Switch Data

Data Value type Brief

gpio number index of light

direction out/ in direction of signal

write value number 0 for turning off / 1 for turning on

¢ Refer to onoff npm package usage for more information.

GPIO Light Switch

* Get gpio index, direction, and write value.

* Use gpio driverdrv_pin mode() & drv_pin write() to operate it.

MATTER Light Switch

* Get gpio index, and write value.
¢ Transform data to matter protocol.

« Usematter send msg to app() to operate lights.

MESH Light Switch

¢ Get gpio index, and write value.
¢ Transform data to mesh protocol.

« Usematter send msg to app() to operate lights.

The following code example is the writeSync’s control light implementation for RTL87X2G. First get gpio value and

direction value, then use specify driver API to operate light.

#ifdef RTL87x2G

#define ENABLE MATTER SWITCH
#define ENABLE MESH SWITCH
#define ENABLE GPIO SWITCH
#endif

#1f defined ENABLE GPIO SWITCH
#include "rtl gpio.h"
#include "rtl rcc.h"
#include "drv_gpio.h"
#include "drv_i2c.h"
#include "drv touch.h"
#include "drv _lcd.h"
#include "touch gt911.h"
#include "string.h"
#include "trace.h"
#include "utils.h"
#endif

(continues on next page)

2.4. Use RVD Tool Design An Application

67

https://www.npmjs.com/package/onoff#usage

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

#1f defined ENABLE MESH SWITCH

#include "app msg.h"

T I0 MSG led msg = {.type = I0 MSG TYPE LED ON};

T I0 MSG led off msg = {.type = IO MSG TYPE LED OFF};
#endif

#1f defined ENABLE MATTER SWITCH
#endif

DECLARE_HANDLER (writeSync)
{
gui log("enter writeSync:%d\n", args[0]);
if (args cnt >= 1 && jerry value is number(args[0]))
{
int write value = jerry get number value(args[0]);
int gpio = -1;
jerry value t vil;
jerry value t v2;
vl = js get property(this value, "gpio");
v2 = js get property(this value, "direction");
gpio = jerry get number value(vl);
jerry release value(vl);
char *direction = js value to string(v2);
jerry release value(v2);
int mode = 0;

if (gpio >= 0)
{

gui log("gpio%d, %d, %d", gpio, mode, write value);

/**
* GPIO
=Y
#ifdef ENABLE GPIO SWITCH
if (!strcmp(direction, "out"))

{
mode = PIN MODE_OUTPUT;
}
else if (!strcmp(direction, "in"))
{
mode = PIN MODE_INPUT;
}

drv_pin_mode(gpio, mode);
drv_pin write(gpio, write value);
#endif

/**
* MESH
*/
#ifdef ENABLE MESH SWITCH
extern bool app send msg to apptask(T_I0 MSG *p msg);
if(write value == 0){
led msg.u.param = 0x64+gpio;
app_send msg to apptask(&led msg);}
else

led off msg.u.param = 0x64+gpio;

(continues on next page)

2.4. Use RVD Tool Design An Application 68

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
app_send msg_to apptask(&led off msg);

}
#endif

Vet

* MATTER

=
#ifdef ENABLE MATTER SWITCH
if (gpio >= 0)

{
extern bool matter send msg to app(uintl6_t sub type, uint32_t param);
uint32_t param = gpio << 8 | write value;
if (gpio '= 49052)
{
//single
matter send msg to app(0, param);
}
else
{
//group
matter send msg to app(1l, param);
}
#endif

}

gui free(direction);
}

return jerry create undefined();

2.4. Use RVD Tool Design An Application 69

CHAPTER
THREE

WIDGETS

Table 1: Abbreviation

Words Definition

acc Accelerate

addr Address

att Attribute

ax Absolute coordinates on the x-axis
blit Bit-Block Image Transfer

buff Buffer

cb Callback

cbsize Cubesize

ctor Constructor

cur_idx Current index in x direction
cur_idy Current index in y direction

cX Center coordinates on the x-axis
dc Display Canvas

dur Duration

dx The difference along the x-axis for touchpad
fd File Descriptor

fg Foreground

fs File System

hw Hardware

id Index

img Image

info Information

init Initialize

mem Memory

mq Message queue

nz Normal vector in Z direction of plane
obj Object

off Offset

pic Picture

pos Position

prev Previous

rst Result

src Source

SX Scale in x direction

tmp Temporary

tx Translation in x direction

70

RTKIOT GUI Documentation, Release v0.0.0.1

3.1 Obj

The Object implements the basic properties of widgets on a screen. The screen widget is the root node of a widget tree.
The screen coordinate system is set as follows. The origin of the polar coordinates is the negative direction of the Y axis,
and the positive direction of the polar coordinates is clockwise:

3.1.1 Usage

Table 2: Gui_Obj Table

Description

API

Get the root object

Create object

Add event

Set event

Free the widget tree recursively from the root to the leaves
Print the widget tree recursively from the root to the leaves
Get the count of one type of widget in the tree
Hide/Show widget

Enable object show or not

Get the root object of tree

Get the child object of tree

Judge the object if in range of the rect

Skip all actions of the parent object(left/right/down/up
slide hold actions)

Skip all actions of the child object(left/right/down/up slide
hold actions)

Skip actions of the other object(left/right/down/up slide
hold actions)

Get area of the object

Point-in-Rectangle Range Check

CRC check

Get widget in tree by name

Get widget in tree by type

Update animate

Set animate

Print the tree in a breadth-first search manner

gui obj get root()

gui obj create()

gui obj add event cb

gui obj enable event

gui obj tree free

gui obj tree print

gui obj tree count by type
gui obj tree show

gui obj show()

gui obj tree get root
gui obj get child handle
gui obj in rect()

e gui obj skip all parent left hold
e gui obj skip all parent right hold
e gui _obj skip all parent down hold
e gui _obj skip all parent up hold

e gui obj skip all child left hold
e gui _obj skip all child right hold
e gui _obj skip all child down_hold
e gui obj skip all child up hold

e gui obj skip other left hold
e gui_obj skip other right hold
e gui obj skip other down hold
e gui obj skip other up hold

gui obj get area()

gui obj point in obj rect()

gui obj checksum()

gui obj tree get widget by name
gui obj tree get widget by type
animate frame update

gui obj set animate

gui obj tree print bfs

3.1. Obj

71

RTKIOT GUI Documentation, Release v0.0.0.1

3.1.2 API

Functions

gui_obj_t *gui_obj get root(void)
Get the root GUI object.

This function returns a pointer to the root GUI object in the widget tree.

Returns
A pointer to the root GUI object.

gui_obj_t *gui_obj_get_fake_root (void)
Get the fake_root GUI object, which would not be drawn.
This function returns a pointer to the fake_root GUI object in the widget tree.

Returns
A pointer to the fake_root GUI object.

gui_obj_t *gui_obj_create (void *parent, const char *name, int16_t x, int16_t y, int16_t w, int16_t h)

creat an obj widget.
Parameters

* parent - the father widget it nested in.
« filename — the obj widget name.

* X — the X-axis coordinate of the widget.
* y —the Y-axis coordinate of the widget.
* W — the width of the widget.

* h — the hight of the widget.

Returns
gui_obj_t*.

void gui_obj_show (void *obj, bool enable)
set object show or not.
Parameters
+ obj - the root of the widget tree.
» enable - true for show, false for hide.

— Example usage

static void app main_ task(gui app t *app)
{

gui img t *hour;

gui obj show(hour, false);

gui obj show(hour,true);
}

bool gui_obj_out_screen (gui_obj_t *obj)

judge the obj if out of screen.

3.1. Obj

72

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_obj get clip_rect(gui_obj_t *obj, gui_rect_t *rect)
Calculate the clipping rectangle of a GUI object relative to its top-level ancestor.
Parameters
+ obj — The GUI object for which the clipping rectangle is calculated.
* rect - The output rectangle that will contain the calculated clipping area.

bool gui_obj_in_rect (gui_obj_t *obj, intl16_tx, int16_ty, int16_t w, int16_t h)
judge the obj if in range of this_widget rect.

Parameters
+ obj — pointer to the GUI object.
* X — the X-axis coordinate of the widget.
* Yy — the Y-axis coordinate of the widget.
* W — the width of the widget.
¢ h — the hight of the widget.

Returns
true.

Returns
false.

void gui_obj_enable_this_parent_short (gui_obj_t *obj)
enable all short click actions from parent object to the root object.
enable all long press actions from parent object to the root object.

Parameters
obj — the root of the widget tree.

void gui_obj_get_area(gui_obj_t *obj, int16_t *x, int16_t *y, int16_t *w, int16_t *h)
get the area of this_widget obj.

Parameters
+ obj — pointer to the GUI object.
* X — the X-axis coordinate of the widget.
* y — the Y-axis coordinate of the widget.
* W — the width of the widget.
* h — the hight of the widget.

bool gui_obj point_in_obj rect (gui_obj_t *obj, intl6_t x, int16_ty)
judge the point if in range of this_widget obj rect.

Parameters
+ obj - widget object pointer.
* X — the X-axis coordinate.
¢ y — the Y-axis coordinate.

Returns
true.

3.1. Obj 73

RTKIOT GUI Documentation, Release v0.0.0.1

Returns
false.

bool gui_obj_point_in_obj_circle(gui_obj_t *obj, int16_tx, int16_ty)
judge the point if in range of this_widget obj circle.
Parameters
+ obj — widget object pointer.
* X — the X-axis coordinate.
* y — the Y-axis coordinate.

Returns
true.

Returns
false.

uint8_t gui_obj_checksum (uint8_t seed, uint8_t *data, uint8_t len)

do crc check.
Parameters
» seed - the initial value to start the checksum calculation.
« data - pointer to the array of bytes for which the checksum is to be calculated.
 len - the number of bytes in the array.

Returns
uint8_t.

gui_obj_t *gui_get_root (gui_obj_t *object)
print name by bfs order.

Parameters
object - widget pointer.

Returns
gui_obj_t * root.
void gui_obj_absolute_xy (gui_obj_t *obj, int *absolute_x, int *absolute_y)

calculate the absolute coordinates of a GUI object.

This function calculates the absolute (global) X and Y coordinates of a given GUI object based on its local position
within the parent hierarchy.

Note: This function assumes that 0bj is a valid pointer and that absolute x and absolute_y are valid
pointers to integers.

Parameters
+ obj — pointer to the GUI object for which to calculate absolute coordinates.
« absolute_x - pointer to an integer where the absolute X coordinate will be stored.

» absolute_y - pointer to an integer where the absolute Y coordinate will be stored.

3.1. Obj 74

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_obj hidden (gui_obj_t *obj, bool hidden)
set the visibility of a GUI object.
This function sets the visibility of a given GUI object by adjusting its hidden state.
Parameters
+ obj — pointer to the GUI object that will be updated.
+ hidden - boolean flag indicating whether the object should be hidden (true) or shown (false).
const char *gui_widget_name (gui_obj_t *widget, const char *name)
set or retrieve the name of a GUI widget.

This function sets the name of a given GUI widget if the provided name is valid. It returns the current name of the
widget.

Parameters
» widget — pointer to the GUI widget whose name will be set or retrieved.

* name - pointer to a string containing the new name for the widget. If the name is valid, it will
be set as the widget’s name.

Returns
the current name of the widget.

void gui_update_speed (int *speed, int speed_recode[])
update touch pad speed vertical.
This function updates the current speed and records the speed change history.
Parameters
 speed — pointer to the current speed, which will be updated by the function.
« speed_recode - array to record speed changes, which will be updated by the function.
void gui_inertial (int *speed, int end_speed, int *offset)
inertial calculation.
This function performs inertial calculations based on the current speed, end speed, and offset.
Parameters
 speed - pointer to the current speed, which will be updated by the function.
« end_speed - target end speed.
« offset — pointer to the offset, which will be updated by the function.
uint32_t gui_get_obj_count (void)
get widget count.
void gui_set_location (gui_obj_t *obj, uint16_t x, uint16_ty)
Set the location of a GUI object.
This function sets the X and Y coordinates of the specified GUI object.
Parameters
+ 0obj - Pointer to the GUI object to set location for.
* X —The X coordinate to set.

e y—The Y coordinate to set.

3.1. Obj 75

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_dom_create_tree_nest (const char *xml, gui_obj_t *parent_widget)
API to create a widget tree structure from an XML file and associate it with a parent widget.
Parameters
« Xml - The path to the XML file to be parsed.
« parent_widget — The parent widget to which the tree structure is to be associated.
char *gui_dom_get_preview_image_file (const char *xml)
Extracts the preview image file path from an XML file.

This function parses the given XML file and attempts to find the preview image file path by looking for specific
tags within the XML.

Parameters
xml_file — The path to the XML file to be parsed.

Returns

A string containing the path to the preview image file. If the XML file cannot be loaded or the
preview image file path cannot be found, returns NULL.

void gui_update_speed_by_displacement (int *speed, int speed_recode[], int displacement)
Update the speed based on displacement.

This function updates the speed value based on the given displacement. It also uses a speed record array to achieve
this.

Parameters
 speed — Pointer to the speed variable to update.
« speed_recode — Array holding the speed records.
« displacement — The displacement value to consider for speed update.
void gui_obj_move (gui_obj_t *obj, int x, int y)
Move a widget object to specified coordinates.
This function moves the specified widget object to a new (X, y) coordinate position.
Parameters
 obj — Pointer to the widget object to be moved.
* X — The new x-coordinate for the widget object.
* y — The new y-coordinate for the widget object.

void gui_obj_create_timer (gui_obj_t *obj, uint32_t interval, bool reload, void (*callback)(void*))
Set a timer for a GUI object.

This function sets a timer for the specified GUI object with a given interval. The timer can be configured to reload
automatically or run only once. When the timer expires, the provided callback function is called.

Parameters
+ obj — Pointer to the GUI object to set the timer for.
o interval - The interval in milliseconds for the timer.

¢ reload - Boolean flag indicating whether the timer should reload automatically (true) or run
only once (false).

« callback - Pointer to the callback function to be called when the timer expires.

3.1. Obj 76

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_obj delete timer (gui_obj_t *obj)
void gui_obj_start_timer (gui_obj_t *obj)

void gui_obj_stop_timer (gui_obj_t *obj)

3.2 Img

The image widget is the basic widget used to display images. Image widgets support moving, zooming, rotating, etc.

3.2.1 Usage

Create Widget
It is possible to wuse gui 1img create from mem() to create an image widget from mem-
ory, or use gui img create from fs() to create an image widget from a file. Alternatively,

gui img create from ftl() can be used to create an image widget from ftl. If the width or height of
the image widget is set to 0, the widget’s size will be set according to the size of the image source automatically.

Update Location

If it is necessary to update the location of an image widget, use gui img set location() to relocate.

Set Attribute

It is possible to use gui img set attribute() to set the attribute of an image widget, replace it with a new
image, and set a new coordinate.

Get Height/Width

If you want to get the height/width of image widget, do so with gui img get height() or
gui img get width().

Refresh

Refresh the image size using gui img refresh size().

Blend Mode

Set the image’s blend mode using gui _1img set mode().

3.2. Img 77

RTKIOT GUI Documentation, Release v0.0.0.1

Translation

Use gui img translate() to move the image widget. It can move an image widget to a new coordinate without
changing the original coordinate in the widget’s attribute.

Rotation

Rotate the image widget around the center of the circle with this APLgui img rotation().

Zoom

You can adjust the size of the image widget to fit your requirements by this API gui img scale().

Opacity

The opacity value of the image is adjustable, and it can be set using gui img set opacity().

Animation

The gui img set animate() can be used to set the animation effects for the image widget.

Quality

The image’s quality can be set using gui img set quality().

Screenshot

The gui img tree convert to img() canbe used to save a fullscreen screenshot. The saved image will be in
RGB format.

3.2.2 Example

#include "root image hongkong/ui_resource.h"
#include "gui img.h"

#include "gui text.h"

#include "draw font.h"

char *tbl text = "gui img create from mem";
void page tbl(void *parent)
{ static char arrayl[50];

static char array2[50];

gui_set font mem resourse(24, TEST FONT24 DOT BIN, TEST FONT24 TABLE BIN);

gui img t *img test = gui img create from mem(parent, "test", SET ON BIN, 0, 0, O,
- 0);

(continues on next page)

3.2. Img 78

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

gui text t *textl = gui_ text create(parent, "textl", 10, 100, 300, 30);
gui text set(textl, tbl text, GUI FONT SRC BMP, Oxffffffff, strlen(tbl text), 24);
gui text mode set(textl, LEFT);

gui text t *text2 = gui text create(parent, "text2", 10, 130, 330, 30);

gui text set(text2, tbl text, GUI FONT SRC BMP, Oxffffffff, strlen(tbl text), 24);
gui_ text mode set(text2, LEFT);

sprintf(arrayl, "gui img get height %d", qui img get height(img test));
text2->utf 8 = arrayl;

text2->len = strlen(arrayl);

gui text t *text3 = gqui text create(parent, "text3", 10, 160, 330, 30);

gui text set(text3, tbl text, GUI FONT SRC BMP, oxffffffff, strlen(tbl text), 24);
gui text mode set(text3, LEFT);

sprintf(array2, "gqui img get width %d", gui img get width(img test));

text3->utf 8 = array2;

text3->len = strlen(array2);

}

void page tb2(void *parent)
{
gui_set font mem resourse(24, TEST FONT24 DOT BIN, TEST FONT24 TABLE BIN);

gui img t *img test = qgui _img create from mem(parent, "test", SET ON BIN, 0, 0, O,
— 0);
gui img set location(img test, 50, 50);

gui text t *text2 = gui_text create(parent, "text2", 10, 100, 330, 24);
gui text set(text2, "gui img set location", GUI FONT SRC BMP, oxffffffff, 20, 24);
gui text mode set(text2, LEFT);

}

void page tb3(void *parent)

{

gui img t *img test = qui img create from mem(parent, "test", SET ON BIN, 0, 0, O,
- 0);

gui img set attribute(img test, "test", SET OFF _BIN, 20, 20);

gui text t *text3 = gqui_ text create(parent, "text3", 10, 100, 330, 24);
gui text set(text3, "gui img set attribute", GUI FONT SRC BMP, oxffffffff, 21, ,
gui text mode set(text3, LEFT);

}

void page tb4(void *parent)

{
gui_set_font_mem resourse(24, TEST FONT24 DOT BIN, TEST FONT24 TABLE BIN);

gui img t *img test = qgui img create from mem(parent, "test", SET ON BIN, 0, 0, O,
- 0);
gui img scale(img test, 0.5, 0.5);

gui text t *textd4 = gui_ text create(parent, "text4d", 10, 100, 330, 24);
gui text set(text4, "gui img scale", GUI FONT SRC BMP, Oxffffffff, 13, 24);
gui text mode set(text4, LEFT);

(continues on next page)

3.2. Img 79

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

void page tb5(void *parent)

{
gui_set_font_mem resourse(24, TEST FONT24 DOT BIN, TEST FONT24 TABLE BIN);

gui img t *img test = qgui img create from mem(parent, "test", SET ON BIN, 0, 0, O,
- 0);
gui img translate(img test, 100, 100);

gui text t *text5 = gqui_text create(parent, "text5", 10, 100, 330, 24);
gui text set(text5, "gui img translate", GUI FONT SRC BMP, Oxffffffff, 17, 24);
gui text mode set(text5, LEFT);

1

void page tb6(void *parent)

{
gui set font mem resourse(24, TEST FONT24 DOT BIN, TEST FONT24 TABLE BIN);

gui img t *img test = gui img create from mem(parent, "test", SET ON BIN, 0, 0, 0,
- 0);
gui img rotation(img test, 10, 0, 0);

gui text t *text6 = gui text create(parent, "text6", 10, 100, 330, 24);
gui text set(text6, "gui img rotation", GUI FONT SRC BMP, Oxffffffff, 16, 24);
gui_ text mode set(text6, LEFT);

3.2.3 API

Functions

uint16_tgui_img_get width (gui_img_t *_this)
load the image to read it’s width.

Parameters
_this — the image widget pointer.

Returns
uint16_t image’s width.

uint16_tgui_img_get_height (gui_img_t *_this)
load the image to read it’s hight.

Parameters
_this — the image widget pointer.

Returns
uint16_t image’s height.

void gui_img_refresh_size(gui_img_t *_this)
refresh the image size from src.

Parameters
_this — the image widget pointer.

3.2. Img 80

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_img_set location(gui img_t *_this, uint16_t x, uint16_ty)

set the image’s location.
Parameters
+ _this — the image widget pointer.
* X — the x coordinate.
* Yy —the y coordinate.

void gui_img_set mode (gui_img *_this, BLEND_MODE_TYPE mode)

set the image’s blend mode.
Parameters
+ _this — the image widget pointer.
* mode — the enumeration value of the mode is BLEND MODE_TYPE.

void gui_img_set attribute(gui img_t *_this, const char *name, void *addr, int16_t x, int16_t y)
set x,y and file path.

Parameters
+ _this — image widget.
* name - change widget name.
 addr - change picture address.
* X — X-axis coordinate.
* Y — Y-axis coordinate.

void gui_img_rotation (gui img t *_this, float degrees, float c_x, float c_y)

rotate the image around the center of the circle.
Parameters
» _this — the image widget pointer.
« degrees — clockwise rotation absolute angle.
* C_X - the X-axis coordinates of the center of the circle.
* C_Y — the Y-axis coordinates of the center of the circle.

void gui_img_scale(gui_img_t *_this, float scale_x, float scale_y)

change the size of the image, take (0, 0) as the zoom center.
Parameters
+ _this — the image widget pointer.
» scale_x - scale in the x direction.
e scale_y - scale in the y direction.

void gui_img_translate (gui_img t *_this, float t_x, float t_y)

move image.
Parameters
+ _this — the image widget pointer.

* t_X - new X-axis coordinate.

3.2. Img 81

RTKIOT GUI Documentation, Release v0.0.0.1

» t_y —new Y-axis coordinate.

void gui_img_skew_X(gui_img t *_this, float degrees)
skew image on X-axis.

Parameters
+ _this — the image widget pointer.
« degrees — skew angle.

void gui_img_skew y (gui_img_t *_this, float degrees)

skew image on Y-axis.
Parameters
+ _this — the image widget pointer.
» degrees — skew angle.

void gui_img_set opacity(gui img_t *_this, unsigned char opacity_value)

add opacity value to the image.
Parameters
+ _this — the image widget pointer.
« opacity_value - The opacity value ranges from 0 to 255, default 255.

gui_img_t *gui_img_c reate_from_mem(void *parent, const char *name, void *addr, int16_t x, int16_t y,
intl6_tw, intl6_t h)

creat an image widget from memory address.

Note: creat an image widget and set attribute.

Parameters
» parent - the father widget it nested in.
* name - widget name.
 addr - bin file address.
* X — the X-axis coordinate of the widget.
* y — the Y-axis coordinate of the widget.
* W — the width of the widget.
* h — the hight of the widget.

Returns
return the widget object pointer.

gui_img_t *qui_img_create_from_ft1 (void *parent, const char *name, void *ftl, int16_t x, int16_t y, int16_t

w, intl6_th)

creat an image widget from memory address.

Note: creat an image widget and set attribute.

3.2. Img

82

RTKIOT GUI Documentation, Release v0.0.0.1

Parameters
» parent - the father widget it nested in.
* hame — widget name.
e ft1 - not xip address, use ftl address.
* X — the X-axis coordinate of the widget.
* y — the Y-axis coordinate of the widget.
* W — the width of the widget.
¢ h — the hight of the widget.

Returns

return the widget object pointer.

gui_img_t *gui_img_create_from_fs (void *parent, const char *name, void *file, int16_t x, int16_t y, int16_t
w, intl6_t h)

creat an image widget from filesystem.
Parameters

» parent - the father widget it nested in.
* name - image widget name.
+ file - image file path.
* X — the X-axis coordinate of the widget.
* y — the Y-axis coordinate of the widget.
* W — the width of the widget.
* h — the hight of the widget.

Returns
gui_img_t*.

void gui_img_set_animate (gui_img t *_this, uint32_t dur, int repeat_count, void *callback, void *p)
set animate.
Parameters
+ _this — pointer.
¢ dur - animation time cost in ms.
* repeat_count - rounds to repeat.
e callback - every frame callback.
* p - callback’s parameter.
void gui_img_set_quality (gui_img_t *_this, bool high_quality)
set the image’s quality.
Parameters
+ _this — the image widget pointer.

« high_quality - image drawn in high quality or not.

3.2. Img 83

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_img_tree convert_to_img(gui_obj_t *obj, gui_matrix_t *matrix, uint8_t *shot_buf)
convert a tree to a image data.
Parameters
+ obj - tree root.
» matrix — null if no need to transform.
float gui_img_get_transform_scale_x(gui img t *img)
get the transform scale in the X direction for a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the scale in the X direction.

float gui_img_get_transform_scale_y(gui img t *img)
get the transform scale in the Y direction for a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the scale in the Y direction.

float gui_img_get_transform_degrees (gui img t *img)
get the rotation angle in degrees for a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the rotation angle in degrees.

float gui_img_get_transform_c_x(gui img_t *img)
get the center X coordinate for rotate of a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the center X coordinate for transformations.

float gui_img_get_transform_c_y (gui img i *img)
get the center Y coordinate for rotate of a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the center Y coordinate for transformations.

float gui_img_get_transform_t_x(gui img 1 *img)
get the translation in the X direction for a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the translation in the X direction.

3.2. Img 84

RTKIOT GUI Documentation, Release v0.0.0.1

float gui_img get transform_t_y(gui img_t *img)

get the translation in the Y direction for a GUI image.

Parameters
img — pointer to the GUI image object.

Returns
the translation in the Y direction.

void gui_img set image data(gui img_t *widget, const uint8_t *image_data_pointer)

Sets the image data for a specified image widget.

This function assigns the given image data to the specified image widget. The image data might correspond to

various formats, and the format should be compatible with the handling of gui img t.
Parameters

+ widget — The pointer to the image widget (qui img t) for which the image data is to be
set.

- image_data_pointer — The pointer to the image data to be set to the widget. The data
should persist as long as the widget needs it or until it is explicitly updated.

const uint8_t *gui_img_get_image_data (gui img 1 *widget)
Gets the image data from a specified image widget.
This function returns the current image data that is set in the specified image widget.

Parameters
widget — The pointer to the image widget (gui img t) from which the image data should be
retrieved.

Returns
A pointer to the image data currently set in the widget. If no image data is set, the result may be

NULL.

struct gui_img_transform_t

image widget structure
Public Members

float degrees

float gui_img_get_transform_degrees(gui_img_t *img);

float c_X

center of image x; float gui_img_get_transform_c_x(gui_img_t *img);

float Cc_Yy

center of image y; float gui_img_get_transform_c_y(gui_img_t *img);

float scale_x

float gui_img_get_transform_scale_x(gui_img_t *img);

3.2. Img

85

RTKIOT GUI Documentation, Release v0.0.0.1

float scale_y

float gui_img_get_transform_scale_y(gui_img_t *img);

float t_Xx

translate of screen x; float gui_img_get_transform_t_x(gui_img_t *img);

float t_y

translate of screen y; float gui_img_get_transform_t_y(gui_img_t *img);

float t_x_old

float t_y old

struct gui_img_t

Public Members
gui_obj_t base
draw_img_t *draw_img
gui_img_transform_t *transform
void *data

void *filename

void *ftl

union gui_img_t
gui_animate_t *animate
uint32_t opacity_value
uint32_t blend_mode
uint32_t src_mode

uint32_t high_quality

3.2,

Img

86

RTKIOT GUI Documentation, Release v0.0.0.1

3.3

uint32_t press_flag

press to change picture to the highlighted

uint32_t release_flag
uint32_t need_clip
uint8_t checksum

uint8_t animate_array_length

Text

The text widget is the basic widget used to display text, which can be used to output text in different fonts, different colors,
and different sizes to the screen. In order to draw text, the font file can be a standard .ttf file or a customized .bin file.

3.3.1 Features

Text widgets can support the following features.

UTF-8/UTF16/UTF-32 support
Multi language support

Text typesetting support

Word wrap and texts scrolling
Anti-aliasing

Multi fonts support

Multi font sizes support
Thirty-two bit true color support
Emoji support

Custom animation effects support
Standards TTF file support®
Self-developed font files support

@: Only part of the chip support this feature.

3.3. Text

87

RTKIOT GUI Documentation, Release v0.0.0.1

3.3.2 Usage

Using functions to load font files and display text.

Initialize the Font File

In order to draw text, font files containing glyph information need to be loaded into the system.

The font file can be a standard .ttf file or a customized .bin file. The font file can be initialized ahead of time to avoid
having to set the font type for each text widget.

e To initialize the new version customized bin font file, use gui font mem init(uint8 t
*font bin addr).

« To initialize the standard TTF file to draw text, use gui_font stb init(void *font ttf addr).
All customized bin font files are available from RTK technicians.

FONT BIN, FONT TTF are all addresses of the files stored in flash.

Create Text Widget

To create a text widget, you canuse gui text create(), The coordinates on the screen and text box size have been
identified after create. These attributes also can be modified whenever you want.

Note: The size of the text box should be larger than the string to be shown; out-of-range text will be hidden.

Set Text Attributes

Set Text

To add some texts or characters to a text widget and set text attributes with gui text set().

Note: The text length must be the same as the set character length, and the font size of the text must be the same as the
size of the loaded font file.

Font Type

The text widget support type setting. This function can be used to set the type. The type is a bin/ttf file address
gui_ text type set().

3.3. Text 88

RTKIOT GUI Documentation, Release v0.0.0.1

Text Content

This interface can be used to set the content that needs to be displayed by the text widget
gui text content set().

Text Encoding

The text widget supports input formats in UTF-8, UTF-16, and UTF-32 encodings simultaneously. Developers can use
gui text encoding set() tochange the encoding format.

Convert to Img

By using this function gui text convert to img(), the text in the text widget will be converted into an image,
stored in memory, and rendered using the image. It also supports image transformations such as scaling and rotation.
This only applies to bitmap fonts.

Note: Because the content and font size information of the text widget is needed, it should be called after set text. If
the content, font size, position, and other attributes of the text have been modified, you need to reuse this interface for
conversion.

Text Input

Text widget supports the input setting. You can use this function to set input gui text input set().

Text Click

Text widget supports click. You can use this function to add the click event for text gui text click().

Text Mode

Text widget supports seven typesetting modes. To set text typesetting mode, use: gui text mode set().

All type setting modes are as follows.

3.3. Text 89

RTKIOT GUI Documentation, Release v0.0.0.1

Table 3: Text Mode

Type Line Type X Direction Y Direction Widget
LEFT Single-line Left Top Text widget (De-
fault)
CENTER Single-line Center Top Text widget
RIGHT Single-line Right Top Text widget
MULTI_LEFT Multi-line Left Top Text widget
MULTI_CENTER Multi-line Center Top Text widget
MULTI_RIGHT Multi-line Right Top Text widget
MID_LEFT Multi-line Left Mid Text widget
MID_CENTER Multi-line Center Mid Text widget
MID_RIGHT Multi-line Right Mid Text widget
SCROLL_X Single-line Right to Left Top Scroll text widget
SCROLL_Y Multi-line Left Bottom to Top Scroll text widget
SCROLL_Y REVERSE Multi-line Right Top to Bottom Scroll text widget
VERTICAL_LEFT Multi-line Left Top to Bottom Text widget
VERTICAL_RIGHT Multi-line Right Bottom to Top Text widget
typedef enum
{
/* TOP */
LEFT = 0x00,
CENTER = 0x01,
RIGHT = 0x02,
MULTI LEFT = 0x03,
MULTI CENTER = 0x04,
MULTI RIGHT = 0x05,
/* MID */
MID LEFT = 0x10,
MID CENTER = 0x11,
MID RIGHT = 0x12,
/* SCROLL */
SCROLL X = 0x30,
SCROLL_Y = 0x31,
SCROLL_Y REVERSE = 0x32,
SCROLL X REVERSE = 0x33,
/* VERTICAL */
VERTICAL LEFT = 0x40,
VERTICAL RIGHT = 0x41,
} TEXT _MODE;
3.3. Text 90

RTKIOT GUI Documentation, Release v0.0.0.1

Text Move

It is possible to use this function gui text move() to move text to a specified location, but x and y cannot be larger
than w and h of the text.

Set Animate

Using this function gui text set animate() to set the animation and implement the animation effect in the
corresponding callback function.

3.3.3 Example

Multiple Text Widget

#include "string.h"

#include "gui obj.h"

#include "guidef.h"

#include "gui text.h"
#include "draw font.h"
#include "gui app.h"

#include "rtk gui_resource.h"

static char chinese[6] =

{

};

OxE4, 0xB8, OxAD,
OXE6, 0x96, 0x87

static void app launcher ui design(gui _app_t *app)

{

gui font mem init
gui font mem init
gui font mem init
gui font mem init

HARMONYOS SIZE24 BITS1 FONT BIN);
HARMONYOS SIZE16 BITS4 FONT BIN);
HARMONYOS SIZE32 BITS1 FONT BIN);
SIMKAI_SIZE24 BITS4 FONT BIN);

PRy

void *screen = &app->screen;

gui text t *textl = gui text create(screen, "textl", 10, 10, 100, 50);
gui text set(textl, chinese, GUI FONT SRC BMP, APP COLOR WHITE, strlen(chinese),,

~24);

gui text type set(textl, HARMONYOS SIZE24 BITS1 FONT BIN, FONT SRC MEMADDR);
gui text mode set(textl, LEFT);

gui text t *text2 = gui text create(screen, "text2", 0, 50, 300, 50);

gui text set(text2, "english", GUI FONT SRC BMP, APP COLOR RED, 7, 16);

gui_ text type set(text2, HARMONYOS SIZE16 BITS4 FONT BIN, FONT SRC MEMADDR) ;
gui text mode set(text2, LEFT);

char *string = "TEXT WIDGET";

gui text t *text3 = gui text create(screen, "text3", 0, 90, 300, 50);

gui text set(text3, string, GUI FONT SRC BMP, APP COLOR BLUE, strlen(string), 32);
gui_ text type set(text3, HARMONYOS SIZE32 BITS1 FONT BIN, FONT SRC MEMADDR) ;

gui text mode set(text3, CENTER);

gui text t *textd4 = gui text create(screen, "text4", 0, 150, 100, 200);

(continues on next page)

3.3. Text 91

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

gui text set(text4, "ABCDEFGHIJKLMNOPQRSTUVWXYZ", GUI FONT SRC BMP, gqui rgb(0,,
~0Oxff, Oxff), 24, 24);

gui text type set(text4, SIMKAI SIZE24 BITS4 FONT BIN, FONT SRC_MEMADDR);

gui text mode set(text4, MULTI CENTER);

Animate Text Widget

#include "root image hongkong/ui_resource.h"
#include "string.h"

#include "gui obj.h"

#include "guidef.h"

#include "gui text.h"

#include "draw font.h"

void change text cb(gui text t *obj)

{
if (obj->animate->current frame > 0 && obj->animate->current frame < 50)
{
gui text move(obj, 50, 150);
gui text content set(obj, "123456789", 9);
else if (obj->animate->current frame > 50 && obj->animate->current frame < 100)
{
gui_ text move(obj, 200, 150);
gui text content set(obj, "987654321", 9);
}
else
{
gui_text move(obj, 125, 50);
gui text content set(obj, "abcdefghi", 9);
}
}
void page tb activity(void *parent)
{
gui font mem init(SIMKAI SIZE24 BITS4 FONT BIN);
gui text t *text = gui_text create(parent, "text", 0, 0, 100, 200);
gui text set(text, "ABCDEFGHI", GUI_FONT SRC BMP, APP_COLOR RED, 9, 24);
gui text type set(text, SIMKAI SIZE24 BITS4 FONT BIN, FONT SRC_MEMADDR);
gui_ text mode set(text, MULTI_CENTER);
gui text set animate(text, 5000, 15, change text cb, text);
}

3.3. Text 92

RTKIOT GUI Documentation, Release v0.0.0.1

3.3.4 API

Enums

enum TEXT_MODE

enum

Values:

enumerator LEFT

enumerator CENTER

enumerator RIGHT

enumerator MULTI_LEFT

enumerator MULTI_CENTER

enumerator MULTI_RIGHT

enumerator MID_LEFT

enumerator MID_CENTER

enumerator MID_RIGHT

enumerator SCROLL_X

enumerator SCROLL_Y

enumerator SCROLL_Y_REVERSE

enumerator SCROLL_X_REVERSE

enumerator VERTICAL_LEFT

enumerator VERTICAL_RIGHT

FONT_SRC_TYPE

font type enum

Values:

enumerator GUI_FONT_SRC_BMP

3.3. Text

93

RTKIOT GUI Documentation, Release v0.0.0.1

enumerator GUI_FONT_SRC_STB
enumerator GUI_FONT_SRC_IMG
enumerator GUI_FONT_SRC_MAT
enumerator GUI_FONT_SRC_FT

enumerator GULI_FONT_SRC_TTF

enum FONT_SRC_MODE

Values:

enumerator FONT_SRC_MEMADDR
enumerator FONT_SRC_FILESYS

enumerator FONT_SRC_FTL

Functions

void gui_text click(gui_text_t *this_widget, gui_event_cb_t event_cb, void *parameter)

set textbox click event cb .
Parameters
+ this_widget - text widget.
» event_cb - cb function.
» parameter — cb parameter.

void gui_text_pswd_done (gui_rext t *this_widget, gui_event_cb_t event_cb, void *parameter)

set textbox password done event cb, to handle password.
Parameters
» this_widget - text widget.
» event_cb - cb function.

» parameter — cb parameter.

void gui_text_set (gui text_t *this_widget, void *text, FONT_SRC_TYPE text_type, gui_color_t color, uint16_t

length, uint8_t font_size)

set the string in a text box widget.

Note: The font size must match the font file!

Parameters

3.3. Text

94

RTKIOT GUI Documentation, Release v0.0.0.1

» this_widget — the text box widget pointer.
o text - the text string.
» text_type - text type.
e color - the text’s color.
e Length — the text string’s length.
» font_size - the text string’s font size.
Returns
void
void gui_text_set_animate (void *o, uint32_t dur, int repeat_count, void *callback, void *p)
set animate.
Parameters
* O - text widget.
e dur - durtion. time length of the animate.
* repeat_count - O:one shoot -1:endless.
e callback - happens at every frame.
* p — callback’s parameter.

void gui_text_mode_set (gui_text t *this_widget, TEXT MODE mode)

set text mode of this_widget text widget.

Note: if text line count was more than one, it will display on the left even if it was set Ift or right.

Parameters
» this_widget — the text widget pointer.

» mode — there was three mode: LEFT, CENTER and RIGHT.

void gui_text_input_set (gui rext t *this_widget, bool inputable)
set inputable.

Parameters
« this_widget — the text box widget pointer.
+ inputable - inputable.

void gui_text_wordwrap_set (gui rext_t *this_widget, bool wordwrap)

By setting wordwrap to enable English word wrapping.
Parameters
« this_widget — the text box widget pointer.

e wordwrap — wordwrap.

3.3. Text 95

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_text _use matrix_by_ img(gui_rext t *this_widget, bool use_img_blit)

Enable/disable matrix-based image rendering for text.
Parameters

+ this - Pointer to the text widget

« use_img_blit - true = use image matrix blitting (for complex transformations), false =

use standard rendering

void gui_text_rendermode_set (gui_text_t *this_widget, uint8_t rendermode)

Set ttf raster render mode.
Parameters
« this_widget — the text box widget pointer.
« rendermode — rendermode.1/2/4/8

void gui_text_set min_scale(gui rext t *this_widget, float min_scale)

set text min scale.
Parameters
+ this — the text box widget pointer.
+ min_scale - minimum scale.

void gui_text_move (gui _text_t *this_widget, int16_t x, int16_t y)

move the text widget.
Parameters
» this_widget — the text box widget pointer.
* X — the X-axis coordinate of the text box.
* y —the Y-axis coordinate of the text box.

void gui_text _size set (gui_text_t *this_widget, uint8_t height, uint8_t width)
set font size or width and height.

Note: if use freetype, width and height is effective, else height will be applied as font size.

Parameters
« this_widget — the text widget pointer.
+ height — font height or font size.

 width — font width(only be effective when freetype was used).

void gui_text_font_mode_set (gui rext 1 *this_widget, FONT SRC_MODE font_mode)

set text font mode.
Parameters
» this_widget — the text widget pointer.

» font_mode - font source mode.

3.3. Text

96

RTKIOT GUI Documentation, Release v0.0.0.1

void gui_text_ type set (gui_rext t *this_widget, void *font_source, FONT_SRC_MODE font_mode)
set font type.

Note: The type must match the font size!

Parameters
» this_widget — the text widget pointer.
» font_source - the addr of .ttf or .bin.

« font_mode - font source mode.

void gui_text_emoji_set (gui_rext_t *this_widget, uint8_t *path, uint8_t size)

Set emoji file path and emoji size.

Note: Need romfs.

EH)

Note: Example of a full emoji image file path: “font/emoji/emoji_ulf30d.bin”.

Parameters
+ this — The text widget pointer.

 path — Path contain folder path and file name prefix. Path eg:”font/emoji/emoji_u”. Folder
path is emoji image file folder path, eg:”font/emoji/”. File name prefix is prefix before the
filename for Unicode sorting, eg:”emoji_u”.

+ size - Emoji image file size. eg 32.

void gui_text_encoding_set (gui rext_t *this_widget, TEXT_CHARSET charset)

set font encoding.

Note: utf-8 or unicode.

Parameters
» this_widget — the text widget pointer.
« encoding_type - encoding_type.

void gui_text_set_matrix(gui rex: t *this_widget, gui_matrix_t *matrix)

set text matrix

Note:

Parameters

« this_widget — the text widget pointer.

3.3. Text

97

RTKIOT GUI Documentation, Release v0.0.0.1

» encoding_type — encoding_type.
void gui_text_content_set (gui rext_ *this_widget, void *text, uint16_t length)
set text content.
Parameters
« this_widget — the text widget pointer.
o text - the text string.
e Length — the text string’s length.

void gui_text_convert_to_img(gui_rext t *this_widget, GUI_FormatType font_img_type)
to draw text by img, so that text can be scaled.

Parameters
« this_widget — the text widget pointer.
« font_img_type — color format.

gui_text t *gui_text_c reate (void *parent, const char *name, int16_t x, int16_t y, int16_t w, int16_t h)
create a text box widget.

Note: The area of the text box should be larger than that of the string to be shown, otherwise, part of the text will
be hidden.

Parameters
» parent - the father widget which the text nested in.
« filename — the widget’s name.
* X — the X-axis coordinate of the text box.
* Yy — the Y-axis coordinate of the text box.
* W — the width of the text box.
¢ h — the hight of the text box.

Returns
return the widget object pointer.

struct gui_text t

text widget structure

Public Members

gui_obj_t base

gui_color_t color

gui_animate_t *animate

3.3. Text 98

RTKIOT GUI Documentation, Release v0.0.0.1

gui_img_t *scale_img
uint8_t *emoji_path

float min_scale

void *content

void *data

void *path

gui_matrix_t *matrix
uint16_t len

uint16_t font_len

uint16_t active_font_len
int16_t char_width_sum
int16_t char_height_sum
int16_t char_line_sum
intl6_toffset_x
intl6_toffset_y
TEXT_MODE mode
TEXT_CHARSET charset
FONT_SRC_TYPE font_type
FONT_SRC_MODE font_mode
uint8_t font_height

uint8_t emoji_size

3.3. Text

99

RTKIOT GUI Documentation, Release v0.0.0.1

uint8_t checksum

bool layout_refresh
bool content_refresh
bool use_img_blit
uint8_t inputable
uint8_t ispasswd

uint8_t wordwrap
uint8_t scope

uint8_t rendermode

struct gui_text_line_t

text line structure
Public Members

uint16_t Line_char

uint16_t Line_dx

3.4 3D Model

The widget supports loading 3D models composed of . 0bj and .mt1 files, and supports adding animation effects.

3.4.1 GUI Load 3D Model

1. Components of a 3D model

» .0bj file: Stores the geometric data of the 3D model, including vertices, normals, texture coordinates, faces,
etc.

« .mt1 file: Describes the material properties of the 3D model, including color, glossiness, transparency, and
texture mapping.

¢ Image files: Textures used in the model.

Fig. 1: Example of 3D Model Components

3.4. 3D Model 100

RTKIOT GUI Documentation, Release v0.0.0.1

2. Parsing the 3D model and generating a 3D information descriptor

* Invoke a script to process the . 0bj file.

Fig. 2: Script Processing

* Generate a 3D information descriptor, which includes parsed OBJ data, parsed MTL data, and texture maps.

Fig. 3: Generating Binary Arrays

3. GUI load descriptor

Place the desc file containing parsed obj data, mtl data, and image data into the project directory, and load it using
gui 3d create().

Example:

void *test 3d = gui 3d create(gui obj get root(), "3d-widget", (void *) acdesc, 0,
— 0, 480, 480);

3.4.2 3D Widget Usage

Create Widget

Use gui 3d create() to create the 3D model. The imported desc_addr file is the parsed data extracted by the
script.

Global Shape Transformation

Use gui 3d set global shape transform cb() to apply a global transformation to the 3D model, where
Cb sets the same shape transformation for all faces of the object. In this function, world and camera represent the
world coordinate transformation of the 3D object and the camera view projection, respectively. Additionally, rectangular
faces support the setting of 1ight information.

Local Shape Transformation

Use gui 3d set local shape transform cb() toapply alocal transformation to the 3D model, where cb
allows setting different shape transformations for each face of the object, and face index specifies the face to be
transformed. In this function, world and camera represent the world coordinate transformation of the 3D object and
the camera view projection, respectively. Additionally, rectangular faces support the setting of Light information.

3.4. 3D Model 101

RTKIOT GUI Documentation, Release v0.0.0.1

World Transformation

The initialization function is gui 3d world inititalize(gui 3d matrix t *world, float x,
float y, float z, float rotX, float rotY, float rotzZ, float scale).

« world: A pointer to the world transformation matrix, it transforms the 3D object from model coordinates to world
coordinates.

¢ X: The distance of translation along the X-axis, used to determine the object’s position in the X direction within
the world coordinate system.

¢ y: The distance of translation along the Y-axis, used to determine the object’s position in the Y direction within
the world coordinate system.

¢ Z: The distance of translation along the Z-axis, used to determine the object’s position in the Z direction within the
world coordinate system.

e rotX: The angle of rotation around the X-axis (in degrees).

e rotY: The angle of rotation around the Y-axis (in degrees).

e rotZ: The angle of rotation around the Z-axis (in degrees).

« scale: A uniform scaling factor used to proportionally scale the object in all directions.
Purpose:

1. The world transformation matrix typically handles transforming the model coordinate system to the world coordi-
nate system. For example, if an object is located at the origin of the model coordinate system, it can be moved to
any position in the scene and scaled/rotated through world transformation.

2. Performing independent world transformations for each face can achieve localized animations or static displays.

3. Different faces can share the same world matrix, or youcanusegui 3d calculator matrix(qui 3d matrix t
*matrix, float x, float y, float z, gui point 4d t point, gqui vector 4d t
vector, float degrees, float scale) to generate different matrices for each face to achieve
personalized local transformations.

Camera Transformation

The initialization function is gui 3d camera UVN initialize(gui 3d camera t *camera,
gui point 4d t cameraPosition, gui point 4d t cameraTarget, float near, float
far, float fov, float viewPortWidth, float viewPortHeight).

e camera: A pointer to the camera structure, used to initialize camera properties.
« cameraPosition: The position of the camera in world coordinates.
o cameraTarget: The target point the camera is directed at, i.e., the focal point of the camera’s line of sight.

e near: The near clipping plane distance, defining the distance from the camera to the near plane of the camera’s
view frustum. Objects closer than this distance will be clipped.

« far: The far clipping plane distance, defining the distance from the camera to the far plane of the view frustum.
Objects farther than this distance will be clipped.

« fov: The field of view, usually expressed as a vertical angle (in degrees), defining the openness of the camera, i.e.,
the opening angle of the camera’s view frustum.

« viewPortWidth: The width of the viewport, defining the horizontal size of the rendering target or window.

» viewPortHeight: The height of the viewport, defining the vertical size of the rendering target or window.

3.4. 3D Model 102

RTKIOT GUI Documentation, Release v0.0.0.1

Purpose:

1. Camera transformation defines the observer’s position and direction in the scene, transforming the world coordinate
system to the camera coordinate system.

2. By manipulating the camera, different perspectives can be achieved, such as translating the camera position or
changing the viewing direction.

Lighting Information

The initialization function is qui 3d light inititalize(gqui 3d light t *light,
gui point 4d t lightPosition, gui point 4d t lightTarget, float included angle,
float blend ratio, gui 3d RGBAcolor t color).

« light: A pointer to the light source structure, used to initialize the properties of the light source.
« lightPosition: The position of the light source in world coordinates.
« lightTarget: The target position of the light source, defining the direction of illumination.

» included angle: The cone angle of the light (in degrees), represented as angle « in the diagram. It determines
the illumination range of the spotlight, which corresponds to the outer circle of the spotlight in the diagram.

e blend ratio: The ratio of the light blending region, defining the softness of the spotlight’s edge. It ranges from
0 to 1 and determines angle /3 in the diagram. The value is calculated using the following formula:

= (1 — ratio)

The blending region extends from the inner circle to the outer circle of the spotlight. Within the inner
circle, the light intensity is constant, while it gradually diminishes from the inner to the outer circle.

« color: The color of the light source and its transparency.

Fig. 4: Example of Spotlight Effect

Purpose:

1. The light source type is a spotlight, and its properties include initial position, light direction, cone angle, blend ratio,
and light color.

2. Adjusting lighting locally for each face or object can create different visual styles.
Set Animation

The gui obj create timer () function can be used to set animation properties for a 3D object. The callback
parameter is a callback function for animation updates.

3.4. 3D Model 103

RTKIOT GUI Documentation, Release v0.0.0.1

3.4.3 Example
3D Butterfly

The model is composed entirely of rectangular faces. By callinggui 3d set local shape transform cb(),
you can set local transformations for different faces to create animation effects.

#include "guidef.h"

#include "gui img.h"

#include "gui obj.h"

#include "string.h"

#include "stdio.h"

#include "stdlib.h"

#include "gui server.h"
#include "gui components init.h"
#include "gui canvas.h"
#include "gui 3d.h"

#include "butterfly/desc.txt"
#include "math.h"
#include "tp algo.h"

static int frame counter = 0;

static float wing angle = 0.0f;
static float butterfly x
static float butterfly y
static float butterfly z

static float butterfly rz = 0
bool is moving to target = false;
static float target dx = 0.0f;
static float target dy = 0.0f;
static float source dx = 0.0f;
static float source dy = 0.0f;

static float move speed = 0.02f;

static float wing time = 0.0f;

void update animation()

{
touch _info t *tp = tp get info();
gui dispdev_t *dc = gui get dc();

if (tp->pressed)

{
target dx = (tp->x - dc->screen width / 2) / 2.5f;
target dy = (tp->y - dc->screen height / 2) / 2.5f;
is moving to target = true;

}

if (is_moving_ to_ target)
{
float dx
float dy

target dx - source dx;
target dy - source dy;

float distance = sqrtf(dx * dx + dy * dy);

if (distance > 10.0f)
{

(continues on next page)

3.4. 3D Model 104

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
// Acceleration and deceleration
float speed factor = fminf(distance / 40.0f, 1.0f);
source_dx += dx * move speed * speed factor;
source_dy += dy * move_speed * speed factor;

// Caculate new rotate angle
float desired angle = atan2f(dy, dx) * (180.0f / M_PI) + 90;
float angle difference = desired angle - butterfly rz;

if (angle difference > 180.0f)
{

angle difference -= 360.0f;

}
if (angle difference < -180.0f)

angle difference += 360.0f;

}
butterfly rz += angle difference * 0.1f;

// Adjust wing flapping frequency based on speed
wing time += 0.2f + speed factor * 0.2f;
wing angle = 60.0f * sinf(wing_ time);

butterfly x = -source_dx;
butterfly y = -source dy;
}
else
{
is moving to target = false;
}
1
else
{
frame_counter++;
wing time += 0.1f;
wing angle = 50.0f * sinf(wing_time);
butterfly z = 5.0f * sinf(frame_counter * 0.05f);
}

}

static void cb(void *this, size_t face index/*face offset*/, gui 3d world t *world,
gui 3d camera_t *camera, gui 3d light t *light)
{

gui dispdev_t *dc = gqui get dc();
gui 3d matrix t face matrix;
gui 3d matrix t object matrix;

gui 3d camera UVN initialize(camera, gui point 4d(0, 0, 80), gui point 4d(0, 0,
—0), 1, 32767, 90,
dc->screen_width, dc->screen_height);

gui 3d world inititalize(&object matrix, butterfly x, butterfly y, butterfly z, 0,
— 0,
butterfly rz,
5);

(continues on next page)

3.4. 3D Model 105

RTKIOT GUI Documentation, Release v0.0.0.1

if (face_index

{

== 0)

gui 3d calculator matrix(&face matrix, 0,

—vector(0,

else if

{

gui_

—vector(0,

}

else if

{

gui_

—vector(0,

}

else if

{

gui_

—vector(0,

}

else

{

gui_

—vector(0,

}

1! 0)!
wing angle, 1);

(face index 1)
3d_calculator matrix(&face matrix, 0,
1I 0)’

-wing angle, 1);

(face index 2)
3d_calculator matrix(&face matrix, 0,
1! 0)’

wing angle, 1);

(face index 3)
3d_calculator matrix(&face matrix, 0,
ll 0)’

-wing angle, 1);

3d_calculator matrix(&face matrix, 0,
ll 0)’ 0!
1)

(continued from previous page)

gui 3d point(0O,

gui 3d point(0O,

gui 3d point(0O,

gui 3d point(0O,

gui 3d point(0O,

*world = gui 3d matrix multiply(face matrix, object matrix);

static int app init(void)

{

0), gui 3d_

0), qui 3d_

0), gui 3d_

0), qui 3d_

0), qui 3d_

void *test 3d = gui 3d create(gui obj get root(), "3d-widget", (void *) acdesc, 0,
— 0, 480, 480);

gui 3d set local shape transform cb(test 3d, 0O,

(gui_3d shape transform cb)cb);

gui obj create timer(&(((gui_3d base t *)test 3d)->base), 17, true, update_
—animation);
gui obj start timer(&(((gui_3d base t *)test 3d)->base));

return 0;

3.4. 3D Model

106

RTKIOT GUI Documentation, Release v0.0.0.1

3D Prism

The model is composed entirely of rectangular faces. By calling gui 3d light inititalize(), you can add
lighting effects.

#include "math.h"
#include "cube3D/desc. txt"

static float rot angle = 0.0f;
void update cube animation()

{
}

rot _angle++;

static void cube cb(gui 3d t *this, size t face/*face offset*/, gui 3d world t *world,
gui 3d camera_t *camera, gui 3d light t *light)
{

gui dispdev_t *dc = gui_get dc();
gui 3d matrix t face matrix;
gui 3d matrix t object matrix;

gui 3d camera UVN initialize(camera, gui point 4d(0, 6, 15), gui point 4d(0, 0, 0),
- 1, 32767, 90,
dc->screen width, dc->screen height);

gui 3d world inititalize(&object matrix, 0, 22, 40, 90, 0, O,
10);

gui 3d light inititalize(light, gqui point 4d(0, 22, 45), gui point 4d(0, 22, 40),,
60, 0.6, (gui 3d RGBAcolor t){255, 215, 0, 255});

gui 3d calculator matrix(&face matrix, 0, 0, 0, gui 3d point(0, 0, 0), gui 3d
—vector(0, 0, 1), rot angle,
1);

*world = gui 3d matrix multiply(face matrix, object matrix);

}

static int app init(void)

{
void *test 3d = gui 3d create(gui_obj get root(), "3d-widget", (void *) acdesc, 0,
-0, 480, 480);

gui 3d set global shape transform cb(test 3d, (gui 3d shape transform cb)cube cb);
gui obj create timer(&(((gui_3d base t *)test 3d)->base), 17, true, update cube
—animation);

gui_obj_start_timer(&(((gui_3d_base_t *)test_3d)->base));

return 0;

3.4. 3D Model 107

RTKIOT GUI Documentation, Release v0.0.0.1

3D Face

The model is composed of 1,454 triangular faces.

#include "guidef.h"

#include "gui img.h"

#include "gui obj.h"

#include "string.h"

#include "stdio.h"

#include "stdlib.h"

#include "gui server.h"
#include "gui components init.h"

#include "gui 3d.h"

#include "tp algo.h"

#include "face3d/desc 1454.txt"
#include "face3d/desc 5822. txt"
static float rot _angle = 0.0f;

void update face animation()

{
touch _info t *tp = tp get info();
if (tp->pressed || tp->pressing)
{
rot_angle += tp->deltaX / 5.0f;
}
}

static void face cb(void *this, gui 3d world t *world,
gui 3d camera_t *camera)
{

gui dispdev_t *dc = gui get dc();
gui 3d matrix t face matrix;
gui 3d matrix t object matrix;

gui 3d camera UVN initialize(camera, gui_point 4d(0, 3, 60), gui point 4d(0, 0, ,
-0), 1, 32767, 90,
dc->screen_width, dc->screen_height);

// gui 3d world inititalize(&object matrix, 0, 25, 120, 0, 0, 0,
// 5);

// gui 3d calculator matrix(&face matrix, 0, 0, 0, gui 3d point(0, 0, 0), gui 3d
—vector(0, 1, 0),

// rot angle,

// 1);

// *world = gui 3d matrix multiply(face matrix, object matrix);

gui 3d world inititalize(world, 0, 25, 120, 0, rot _angle, 0, 5);

static int app init(void)
(continues on next page)

3.4. 3D Model 108

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

{
void *test 3d = gui 3d create(gui obj get root(), "3d-widget", (void *) acdesc_
—1454, 0, 0, 480,
480) ;
gui 3d set global shape transform cb(test 3d, (qui 3d shape transform cb)face cb);

// extern void gui fps create(void *parent);
// gui fps create(&(app->screen));

gui obj create timer(&(((gui_3d base t *)test 3d)->base), 17, true, update face
—animation);
gui obj start timer(&(((gui_ 3d base t *)test 3d)->base));

return 0;

3.4.4 API

Typedefs

typedef void (*gui_3d_shape_transform_ch)(void *this, gui_3d_world_t *world, gui_3d_camera_t *camera,
void *extra)

Functions

void *gui_3d_create (void *parent, const char *name, void *desc_addr, int16_t x, int16_ty, int16_t w, int16_t h)

3d widget create
Parameters

* parent - parent widget
* name - widget name
» desc_addr — description file data
* X — the X-axis coordinate relative to parent widget
* y —the Y-axis coordinate relative to parent widget
e W - width
¢ h - height

Returns
the widget object pointer

void gui_3d_set_global_shape_transform_cb (void *this, gui_3d_shape_transform_cb cb)
set global shape transform callback

Parameters

+ this — the 3d widget pointer

3.4. 3D Model 109

RTKIOT GUI Documentation, Release v0.0.0.1

¢ cb — Set callback functions for the world coordinate system, camera coordinate system, and
light source for all faces

void gui_3d_set_local_shape_transform_cb (void *this, size_t face, gui_3d_shape_transform_cb cb)

set local shape transform callback
Parameters
+ this — the 3d widget pointer
« face - face offset

¢ cb — Set callback functions for the world coordinate system, camera coordinate system, and
light source for the specified face

void gui_3d_on_click (void *this, void *callback, void *parameter)
Set a callback function for when the 3D widget is clicked.

Parameters
+ this — Pointer to the 3D widget.
» callback — Callback function to execute on click.

* parameter - Additional parameter for the callback.

structgui_3d_base t

Public Members

gui_obj_t base

gui_3d_description_t *desc

3.5 View

The view widget is a kind of container that makes switching more convenient. Any new view widget can be created
in real time in response to an event(clicking and sliding in all four directions...) and multiple switching effects can be
selected. During the switching process, there will be two views in the memory, and after the switching is completed, the
undisplayed view will be automatically cleaned up, which can effectively reduce the memory consumption.

3.5.1 Usage

Register Descriptor of View

The gui view descriptor register() function can be used to register descriptor of view in the descrip-
tor list for other view to read and use as a parameter to create the view, via passing in the descriptor’s address. The
gui view descriptor structure is defined as follows:

3.5. View 110

RTKIOT GUI Documentation, Release v0.0.0.1

typedef struct gui view descriptor

{
const char *name;
gui view t **pView;

void (* on_switch_in)(qui view t *view); // callback function when view is,
—Switched in and created
void (* on_switch out)(gui view t
*view); // callback function when view is switched out and
—.destroyed

uint8_t keep 1 1;
} qui view descriptor t; // if keep is true, the view will not be destroyed when,
—~switch to other view and will be created when register view

Get Descriptor of View by Name

The gui view descriptor get() function can be used to get the view descriptor with the corresponding name
by passing in the string.

Create View Widget

The gui view create() function can be used to establish a view widget.

Set Switch View Event

The gui view switch on event() function can be used to set switch view
event. Repeatable settings for a particular event will use the latest descriptor. Spe-
cific events include @ GUI EVENT TOUCH CLICKED @ GUI EVENT KB SHORT CLICKED @
GUI EVENT TOUCH MOVE LEFTHR GUI EVENT TOUCH MOVE RIGHT and so on. The available switch-
ing styles include the following:

typedef enum
{
VIEW STILL
VIEW TRANSPLATION
VIEW REDUCTION
VIEW ROTATE

0x0000, ///< Overlay effect with new view transplate in
0x0001, ///< Transplate from the slide direction
0x0002, ///< Zoom in from the slide direction

0x0003, ///< Rotate in from the slide direction

VIEW CUBE = 0x0004, ///< Rotate in from the slide direction like cube
VIEW ANIMATION NULL = 0x0005,

VIEW ANIMATION 1, ///< Recommended for startup

VIEW ANIMATION 2, ///< Recommended for startup

VIEW ANIMATION 3, ///< Recommended for startup

VIEW ANIMATION 4, ///< Recommended for startup

VIEW ANIMATION 5, ///< Recommended for startup

VIEW ANIMATION 6, ///< Recommended for shutdown

VIEW ANIMATION 7, ///< Recommended for shutdown

VIEW ANIMATION 8, ///< Recommended for shutdown

} VIEW SWITCH STYLE;

3.5. View 111

RTKIOT GUI Documentation, Release v0.0.0.1

Switch View Directly
The gui view switch direct () function can be used to switch view directly, which can be used in conjunction

with events or animations of the child widgets based on view. Note that the switching style is limited to the animation
style and cannot be set to the sliding style.

Get Current View Pointer

The gui view get current view() function can be used to get current view pointer, and can be used with
gui view switch direct() toswitch the current view.

3.5.2 Example
View

Below are three separate C files, each containing a descriptor for the view and the design function.

3.5.3 API

Defines

EVENT_NUM_MAX

Enums

enum VIEW_SWITCH_STYLE

Values:

enumerator VIEW_STILL

Overlay effect with new view transplate in.

enumerator VIEW_TRANSPLATION

Transplate from the slide direction.

enumerator VIEW_REDUCTION

Zoom in from the slide direction.

enumerator VIEW_ROTATE

Rotate in from the slide direction.

enumerator VIEW_CUBE

Rotate in from the slide direction like cube.

enumerator VIEW_ANIMATION_NULL

3.5. View 112

RTKIOT GUI Documentation, Release v0.0.0.1

enumerator VIEW_ANIMATION_1

Recommended for startup.

enumerator VIEW_ANIMATION_2

Recommended for startup.

enumerator VIEW_ANIMATION_3

Recommended for startup.

enumerator VIEW_ANIMATION_4

Recommended for startup.

enumerator VIEW_ANIMATION_5

Recommended for startup.

enumerator VIEW_ANIMATION_6

Recommended for shutdown.

enumerator VIEW_ANIMATION_7

Recommended for shutdown.

enumerator VIEW_ANIMATION_8

Recommended for shutdown.

Functions
gui_view_t *gui_view_create (void *parent, const gui_view_descriptor_t *descriptor, int16_t x, int16_t y, int16_t
w, int16_th)
Create a view widget.
Parameters
» parent — The father widget it nested in.
» descriptor - Pointer to a descriptor that defines the new view to switch to.
* X — The X-axis coordinate relative to parent widget

* y — The Y-axis coordinate relative to parent widget

e w— Width
* h - Height
Returns

return the widget object pointer.
void gui_view_descriptor_register (const gui_view_descriptor_t *descriptor)
Register view’s descriptor.

Parameters
descriptor — Pointer to a descriptor that defines the new view to switch to.

3.5. View 113

RTKIOT GUI Documentation, Release v0.0.0.1

const gui_view_descriptor_t *gui_view_descriptor_get (const char *name)

Get target view’s descriptor by name.

Parameters
name — View descriptor’s name that can used to find target view.

void gui_view_switch_on_event (gui view_r *_this, const gui_view_descriptor_t *descriptor,
VIEW_SWITCH_STYLE switch_out_style, VIEW_SWITCH_STYLE
switch_in_style, gui_event_t event)

Switches the current GUI view to a new view based on the specified event.

This function handles the transition between GUI views. It takes the current view context and switches it to a new
view as described by the descriptor. The transition is triggered by a specified event and can be customized
with different switch styles for the outgoing and incoming views.

Parameters
+ _this — Pointer to the current GUI view context that is being manipulated.
» descriptor — Pointer to a descriptor that defines the new view to switch to.
» switch_out_style - Style applied to the outgoing view during the switch.
« switch_in_style - Style applied to the incoming view during the switch.
» event - The event that triggers the view switch.

void gui_view_switch_direct (gui_view_t *_this, const gui_view_descriptor_t *descriptor,
VIEW_SWITCH_STYLE switch_out_style, VIEW_SWITCH_STYLE
switch_in_style)

Switches directly the current GUI view to a new view through animation.

This function handles the transition between GUI views. It takes the current view context and switches it to a new
view as described by the descriptor. The transition animation can be customized with different animation
switch styles for the outgoing and incoming views.

Parameters
+ _this — Pointer to the current GUI view context that is being manipulated.
 descriptor - Pointer to a descriptor that defines the new view to switch to.
« switch_out_style - Style applied to the outgoing view during the switch.
» switch_in_style — Style applied to the incoming view during the switch.

gui_view_t *gui_view_get_current_view(void)

Get current view pointer.

Returns
return current view pointer.

structgui_view id t

3.5. View 114

RTKIOT GUI Documentation, Release v0.0.0.1

Public Members

int8_t X
int8_ty

struct gui_view t

Public Members

gui_obj_t base

intl6_t release_x

intl6_t release_y
gui_animate_t *animate
gui_view_id_t cU r_id
VIEW_SWITCH_STYLE style
const struct gui_view_descriptor *desc ripto r
uint32_t view_switch_ready
uint32_t event

uint32_t moveback

uint32_t view_tp

uint32_t view_left

uint32_t view_right

uint32_t view_up

uint32_t view_down

uint32_t view_click

3.5. View 115

RTKIOT GUI Documentation, Release v0.0.0.1

uint32_t view_touch_long
uint32_t view _button

uint32_t view_button_long

struct gui_view_on_event **on_event
uint§_t on_event_num

uint8_t checksum

struct gui_view descriptor_t

Public Members

const char *name

gui_view_t **pView

void (*on_switch_in)(gui_view_t *view)
void (*on_switch_out)(gui_view_t *view)
uint8_t keep

struct gui_view_on_event_t

Public Members

const gui_view_descriptor_t *desc riptor
VIEW_SWITCH_STYLE switch_out_style
VIEW_SWITCH_STYLE switch_in_style

gui_event_t event

3.5. View 116

CHAPTER
FOUR

PORTING

Porting consists of two parts: platform porting and display scheme extension. The display scheme extension currently
supports font library porting.

4.1 Platform Porting

The porting files are located in the gui_port folder. Six files need to be modified, with their filenames and functions
as follows.

Filename Description

gui port acc.c Acceleration

gui port dc.c Display Device

gui port filesystem.c Filesystem

gui port ftl.c Flash Translation Layer
gui port indev.c Input Device

gui port os.c Operating System

Currently, porting has been done on FreeRTOS, RT-Thread, and Windows for reference.

4.1.1 Acceleration

 Referto guidef.hand gui port acc.c.

* Define the accelerated drawing interface depending on the platform model, generally hw _acc blit or
sw acc blit.

¢ The structure definition is as follows:

typedef struct acc_engine
{

void (*blit)(draw img t *image, gui dispdev_t *dc, gui rect t *rect);
} acc_engine t;

117

RTKIOT GUI Documentation, Release v0.0.0.1

4.1.2 Display Device

» Referto guidef.hand gui port dc.c.

* Define the screen width and height, framebuffer address and mode, whether the resolution is scaled, and implement

the refresh function. Refer to guidef . h for the structure definition.

 Atypical gui dispdev structure initialization declaration is as follows:

(static struct gui_dispdev dc =

{
.bit depth = DRV _PIXEL BITS,
.fb width = DRV_LCD WIDTH,
.fb_height = FB HEIGHT,
.screen_width = DRV_LCD WIDTH,
.screen_height = DRV_LCD HIGHT,
.dc.disp buf 1 = disp write buffl port,
.dc.disp buf 2 = disp write buff2 port,
.driver _ic fps = 60,
.driver ic hfp = 10,
.driver ic hbp = 10,
.driver ic active width = DRV_LCD WIDTH,
.type = DC_RAMLESS,
.adaption = false,
.section = {0, 0, 0, 0},
.section count = 0,
.lcd update = port gui lcd update,
.flash _seq trans disable = flash boost disable,
.flash_seq trans enable = flash boost enable,
.reset lcd timer = reset vendor counter,
.get lcd us = read vendor counter no display,
.lcd te wait = port lcd te wait,
.dc.scale x =1,
.dc.scale y = 1,

b

* InDC_SINGLE mode, the framebuffer size is screen_width * screen_height * bit depth / 8.

e In DC_RAMLESS mode, two partial framebuffers are used, with size fb width
bit depth / 8, where fb_height is the segmented height.

Interface

*

fb height

*

The following table lists the LCD-related interfaces supported by mainstream chips. If you want to know more informa-

tion, please click on the specific chip name.

SOC 8080 QSPI RGB MIPI SPI
RTL8762C Y NA NA NA Y
RTL8762D Y Y NA NA Y
RTL8763E Y Y NA NA Y
RTL8772G Y Y Y NA Y
RTL8773E Y Y Y NA Y

Note: Y’ means the driver is already included in the library. ‘NA’ means the driver is not yet included in the library.

4.1. Platform Porting

118

https://www.realmcu.com/en/Home/Product/93cc0582-3a3f-4ea8-82ea-76c6504e478a
https://www.realmcu.com/en/Home/Product/52feef61-22d0-483e-926f-06eb10e804ca
https://www.realmcu.com/en/Home/Product/eed7a243-66bf-4b5c-b811-a60d2d4e95cf
https://www.realmcu.com/en/Home/Product/c175760b-088e-43d9-86da-1fc9b3f07ec3
https://www.realmcu.com/en/Home/Product/eed7a243-66bf-4b5c-b811-a60d2d4e95cf

RTKIOT GUI Documentation, Release v0.0.0.1

Driver IC

The following table lists the LCD-related driver ICs supported by mainstream chips. If you want to know more informa-
tion, please click on the specific chip name.

SOC EK97 ICNA3 NT35¢ NV30 ST77C ST77¢ ST77 OTM80 SH86(SH86(RM69! ST77 NV3041A
RTL87¢ NA NA NA NA NA NA Y NA NA NA Y Y Y

RTL87¢ NA NA Y NA NA NA NA NA NA Y NA NA NA
RTL87 Y Y Y Y Y Y Y NA NA NA NA NA NA
RTL87 NA NA NA NA NA NA NA NA Y NA NA NA NA

Note: Y’ means the driver is already included in the library. ‘NA’ means the driver is not yet included in the library.

4.1.3 Filesystem

e Referto guidef.hand gui port filesystem.c
* Define several posix-like interfaces to operate files and directories.
* If not using a filesystem, you can fill in null pointers.

¢ The structure definition is as follows:

struct gui_fs
{
int (*open) (const char *file, int flags, ...);
int (*close) (int d);
int (*read) (int fd, void *buf, size_t len);
int (*write) (int fd, const void *buf, size_ t len);
int (*lseek) (int fd, int offset, int whence);
/* directory api*/
gui fs dir *(*opendir)(const char *name);
struct gui_fs_dirent *(*readdir)(gui_ fs dir *d);
int (*closedir)(gui fs dir *d);
int (*ioctl) (int fildes, int cmd, ...);
void (*fstat)(int fildes, gui fs stat t *buf);
}

4.1.4 Flash Translation Layer

 Referto guidef.hand gui port ftl.c
« Define three interfaces for the Flash Translation Layer: read, write, erase.
* If not using a Flash Translation Layer, you can fill in null pointers.

¢ The structure definition is as follows:

struct gui ftl
{
int (*read) (uint32_t addr, uint8_t *buf, uint32_t len);
int (*write) (uint32_t addr, const uint8 t *buf, uint32_t len);

(continues on next page)

4.1. Platform Porting 119

https://www.realmcu.com/en/Home/Product/52feef61-22d0-483e-926f-06eb10e804ca
https://www.realmcu.com/en/Home/Product/eed7a243-66bf-4b5c-b811-a60d2d4e95cf
https://www.realmcu.com/en/Home/Product/c175760b-088e-43d9-86da-1fc9b3f07ec3
https://www.realmcu.com/en/Home/Product/eed7a243-66bf-4b5c-b811-a60d2d4e95cf

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

int (*erase) (uint32_t addr, uint32_t len);
}i

4.1.5 Input Device

 Referto guidef.hand gui port indev.c

* Input devices include touchpads, keyboards, and wheels. The structure for input information is as follows:

typedef struct gui_indev
{
uintl6_t tp witdh;
uintl6_t tp height;
uint32_t touch timeout ms;
uintl6_t long button time ms;
uintl6_t short button time ms;
uintl6_t kb long button time ms;
uintl6_t kb short button time ms;
uintl6_t quick slide time ms;

void (*ext button indicate) (void (*callback) (void));
gui touch port data t *(*tp _get data)(void);
gui kb port data t *(*kb get port data)(void);

gui wheel port data t *(*wheel get port data)(void);
} gui_indev_t;

¢ If a specific input device is needed, the corresponding data acquisition function needs to be implemented in
gui indev, and the required time thresholds need to be filled in.

Touch IC

The following table lists the Touch-related ICs supported by all chips. If you want to know more information, please click
on the specific chip name.

SOC CST816S CHSC6417 FT3169 GT911 ZT2717 CST816T GT9147
RTL8762D Y NA NA NA NA NA NA
RTL8763E NA NA NA NA NA Y Y
RTL8772G NA NA NA Y Y NA NA
RTL8773E Y NA NA Y NA NA NA

Note: Y’ means the driver is already included in the library. ‘NA’ means the driver is not yet included in the library.

4.1. Platform Porting 120

https://www.realmcu.com/en/Home/Product/52feef61-22d0-483e-926f-06eb10e804ca
https://www.realmcu.com/en/Home/Product/eed7a243-66bf-4b5c-b811-a60d2d4e95cf
https://www.realmcu.com/en/Home/Product/c175760b-088e-43d9-86da-1fc9b3f07ec3
https://www.realmcu.com/en/Home/Product/eed7a243-66bf-4b5c-b811-a60d2d4e95cf

RTKIOT GUI Documentation, Release v0.0.0.1

4.1.6 Operating System

» Referto guidef.hand gui port os.c

 Define the interfaces for thread, timer, message queue, and memory management. The structure definition is as
follows:

typedef struct gui_os_api

{
char *name;
void *(*thread create)(const char *name, void (*entry)(void *param), void,
*
—*param,

uint32_t stack size, uint8_t priority);

bool (*thread delete)(void *handle);

bool (*thread suspend)(void *handle);

bool (*thread resume)(void *handle);

bool (*thread mdelay) (uint32_t ms);

uint32_t (*thread ms get) (void);

uint32_t (*thread us get) (void);

bool (*mg create)(void *handle, const char *name, uint32_t msg size, uint32_t
—max_msgs) ;

bool (*mg send)(void *handle, void *buffer, uint32_t size, uint32_t timeout);

bool (*mg send urgent)(void *handle, void *buffer, uint32_t size, uint32_t
—timeout);

bool (*mg recv)(void *handle, void *buffer, uint32_t size, uint32_t timeout);

void *(*f malloc) (uint32_t);
void *(*f realloc)(void *ptr, uint32_t);
void (*f free)(void *rmem);

void (*gui_sleep cb)(void);

void *mem_addr;
uint32_t mem size;

uint32_t mem threshold size;
void *lower _mem addr;
uint32_t lower_mem size;

log func_t log;
void (*gui tick hook) (void);
} qui os api t;

4.1.7 Sleep Management

To reduce power consumption and increase the device’s usage time, sleep (low power) mode is supported.

e Refertogui app.h

(typedef struct gui app gui app t;
struct gui_app

{
gui obj t screen; //!< Root node of the control tree
const char *xml; // 1< Control tree design file
uint32_t active ms; //!< Screen off delay
void *thread id; //!< Thread handle (optional)

void (* thread entry)(void *this); //!< Thread entry function
(continues on next page)

4.1. Platform Porting 121

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

void (* ctor)(void *this); //!< Constructor

void (* dtor)(void *this); //!< Destructor

void (* ui design)(gui app t *); //!< UI creation entry function
bool 1lvgl;

bool arm2d;

bool close;

bool next;

bool close sync;

}

active ms is the standby time of the GUI application, which can be defined as different values in different applications.
Like other types of electronic devices, when the screen continuously displays an interface for the standby time, the device
will enter sleep mode. In sleep mode, the device can be awakened by touching the touchpad, pressing a key, or sending
a message. In the chip manual, this low power state where peripherals can be turned off is called Deep Low Power State
(DLPS). More information about DLPS can be found in the relevant SDK documentation.

4.2 Font Porting

This chapter will analyze the font library code segment and explain how to replace HoneyGUTI’s native font library with
a custom one provided by the developer, or how to add customized features.

4.2.1 Dot Matrix Font Library Porting
Glyph Loading

Text Encoding Conversion

In the file font mem.c, within the function gui font get dot info(), pro-
cess content by charset() parses the text content of the text widget and saves it as Unicode (UTF-32) in
unicode buf. The number of Unicode characters is returned in unicode len.

uint32_t *unicode buf = NULL;
uintl6_t unicode len = 0;
unicode len = process content by charset(text->charset, text->content, text->len, &
—unicode buf);
if (unicode len == 0)
{
gui log("Warning! After process, unicode len of text: %s is 0!\n", text->base.
—name) ;
text->font len = 0;
return;

}

For the specific implementation of process content by charset(), please refer to draw_font.c.

Note: The parsing process supports UTF-8, UTF-16, and UTF-32.

Subsequently, Unicode information in unicode buf will be used to index text data from the font library.

4.2. Font Porting 122

RTKIOT GUI Documentation, Release v0.0.0.1

Text encoding conversion for minor languages, such as Arabic character concatenation and other calculations involving
Unicode, can be performed either before or after the encoding conversion. If the conversion is done later, unicode len
must be updated accordingly.

Note: The unit of unicode_1len is bytes, not the number of characters.

Font Library Indexing

In the file font _mem. ¢, within the function gui font get dot info(), the Unicode value is parsed and then
used to index glyph information from the font library designated by the text widget.

Since the font library tool has the crop attribute and two indexing modes, different parsing code is used to find text data
and dot matrix data in the font library file using the Unicode value.

The purpose of the font library parsing code is to populate the Chr structure array, which is structured as follows:

typedef struct
{
uint32_t unicode;
intle_t x;
intl6_t vy;
intl6e_t w;
intl6e t h;
uint8_t char y;
uint8_t char w;
uint8 t char h;
uint8_t *dot addr;
uint8_t *buf;
gui img t *emoji img;
} mem char t;

Each member has the following meanings:

Unicode: The Unicode of the dot matrix text, expressed in UTF-32LE format.

X: The X-coordinate of the upper-left corner of the dot matrix text boundary, determined during layout, used to
set the drawing coordinates of the text.

y: The Y-coordinate of the upper-left corner of the dot matrix text boundary, determined during layout, used to
set the drawing coordinates of the text.

w: The data width of the character in the dot matrix data. Due to byte alignment and compression characteristics,
this value is not always equal to the font size.

h: The height of the dot matrix text, which is always equal to the font size, used to define the basic drawing area
and for multi-line layout.

char_y: The number of blank rows above the character, representing the Y-coordinate distance between the
topmost pixel of the text dot matrix and the upper boundary, used to constrain the drawing area.

char_w: The pixel width of the character, representing the difference in the X-coordinate between the leftmost
boundary (starting point) and the rightmost pixel of the text. This value is used to constrain the drawing area during
drawing and represents the text width during layout.

char_h: The pixel height of the character, representing the Y-coordinate distance between the bottommost pixel
of the text dot matrix and the upper boundary. The value of char h minus char_y gives the actual pixel height
of the dot matrix.

4.2. Font Porting 123

RTKIOT GUI Documentation, Release v0.0.0.1

« dot addr: The starting address of the dot matrix data corresponding to the text.

e« emoji img: The pointer to the widget corresponding to the Emoji image. This value is NULL if the Emoji
feature is not used.

Fig. 1: Glyph Example

During the font library indexing phase, all members of Chr except for the X and Yy coordinates will be populated to
prepare for the next step of layout.

Note: Due to differences in data storage rules under different modes, the drawing areas also vary. For example, char_y
and char _h are only effective when crop=1 and index_method=0.

Since this stage involves using the Unicode to look up width information for the dot matrix text and the dot matrix data
pointer, it’s best to complete the Unicode-level text transformations before this step. For example, Arabic script ligatures
should be handled in this stage, whereas Thai glyph fusion should be handled during the layout stage.

If you are porting using your custom font library, you can populate the Chr data structures using information from your
custom font library. The default parts can be used for the subsequent layout and drawing stages.

Layout

The text widget supports various layout modes.

The specific layout functionality is located in the file font_mem. c in the function gui font mem layout().
Each layout mode has a different layout logic; however, all depend on the glyph information chr and the boundary
information rect provided by the text widget.

The rect struct array is structured as follows:

typedef struct gui_text_rect
{
intl6_t x1;
intl6_t y1;
intl6_t x2;
intle t y2;
intl6_t xboundleft;
intl6_t xboundright;
intl6_t yboundtop;
intl16_t yboundbottom;
} gui text rect t;

The rect is the display range of the widget passed from the widget layer. In this structure, X1 and X2 represent the
X-coordinates of the left and right borders, respectively, while Y1 and y2 represent the Y-coordinates of the top and
bottom borders, respectively.

These values are calculated internally by the widget based on its position and size at the time of creation. From the four
coordinates of rect, you can calculate rect w (width) and rect_h (height).

There are also four bound values used by the scrolling text widget (scroll text) to handle display boundaries.
These bound values are currently not used by the regular text widget (text).

Developers can add new layout modes as per their requirements.

By enabling the English word wrapping feature (w0 rdwrap) via the functiongui_text wordwrap set, the multi-
line layout will adhere to English word wrapping rules to prevent words from being split across lines.

4.2. Font Porting 124

RTKIOT GUI Documentation, Release v0.0.0.1

Character Rendering

The code for rendering bitmap characters is located in the rtk_draw_unicode function in font_mem. c.

You can enable matrix operations for the text widget to support text scaling effects; the rendering code for this feature is
in rtk_draw_unicode matrixin font mem matrix.c.

Additionally, you can enable a feature to convert text into an image for achieving complex effects; this rendering code is
found in gui font bmp2img one charin font mem img.c.

The character rendering stage does not involve any layout information; it only reads the glyph information and renders it
to the screen buffer.

Each character’s rendering is constrained by three boundaries: the widget’s boundary, the screen’s boundary, and the
current character’s boundary.

If developers wish to use a special font library for rendering, they need to modify the bitmap data parsing code and draw
the pixels into the screen buffer.

4.2.2 API

Defines

FONT_MALLOC_PSRAM (x)
FONT_FREE_PSRAM(x)

FONT_FILE_BMP_FLAG

Functions

uint8_t gui_font_mem_init (uint8_t *font_bin_addr)

Initialize the character binary file and store the font and corresponding information in the font list.

Parameters
font_bin_addr - the binary file address of this font type

uint8_t gui_font_mem_init_ft1 (uint8_t *font_bin_addr)

Initialize the character binary file and store the font and corresponding information in the font list.

Parameters
font_bin_addr - font file address

Returns
uint8_t

uint8_t gui_font_mem_init fs (uint8_t *font_bin_addr)
Initialize the character binary file and store the font and corresponding information in the font list.

Parameters
font_bin_addr - font file address

Returns
uint8_t

4.2. Font Porting 125

RTKIOT GUI Documentation, Release v0.0.0.1

uint8_t gui_font_mem_init mem (uint8_t *font_bin_addr)

Initialize the character binary file and store the font and corresponding information in the font list.

Parameters
font_bin_addr - font file address

Returns
uint8_t

uint8_t gui_font_mem_destroy (uint8_t *font_bin_addr)
Destroy this flot type in font list.

Parameters
font_bin_addr - font file address

Returns
uint8_t

void gui_font_mem_load (gui_rext t *text, gui_text_rect_t *rect)

Preprocessing of bitmap fonts using internal engines.
Parameters
» text - Widget pointer
* rect - Widget boundary

void gui_font_mem_draw(gui rext t *text, gui_text_rect_t *rect)

Drawing of bitmap fonts using internal engine.
Parameters
» text - Widget pointer
* rect - Widget boundary

void gui_font_mem_unload (gui rext 1 *text)
Post-processing work for drawing bitmap fonts using internal engines.

Parameters
text — Widget pointer

void gui_font_mem_obj destroy(gui text r *text)
GUI_FONT_SRC_BMP text widget destroy function.

Parameters
text - Widget pointer

uint32_t gui_get_mem_char_width (void *content, void *font_bin_addr, TEXT CHARSET charset)
Get the pixel width of the text in the current font file.

Parameters
» content - text pointer
« font_bin_addr - font file address
« charset - text encoding format

Returns
uint32_t

4.2. Font Porting 126

RTKIOT GUI Documentation, Release v0.0.0.1

uint32_tgui_get mem_utf8 char_width (void *content, void *font_bin_addr)
Get the pixel width of the utf-8 text in the current font file.

Parameters
» content - text pointer
« font_bin_addr - font file address

Returns
uint32_t

uint8_t get_fontlib_by size (uint8_t font_size)
Get the fontlib name object.

Parameters
font_size — font size

Returns
uint8_t font lib index

uint8_t get_fontlib_by name (uint8_t *font_file)
Get the fontlib name object.

Parameters
font_file - font file

Returns
uint8_t font lib index

void gui_font_mem_layout (gui_rext t *text, gui_text_rect_t *rect)
text layout by mode

Parameters
» text - Widget pointer
* rect - Widget boundary

void gui_font_get dot_info (gui rexr r *text)
get dot info by utf-8 or utf-16

Parameters
text - Widget pointer

struct GUI_CHAR_HEAD

Public Members

uint8_t char_y
uint8_t baseline
uint8_t char_w

uint8_t char_h

4.2. Font Porting 127

RTKIOT GUI Documentation, Release v0.0.0.1

struct mem_char_t

mem char struct start

Public Members

uint32_t unicode
intl6_t X

intl6_ty

intl6_tw

intl6_th

uint8_t char_y
uint8_t char_w
uint8_t char_h
uint8_t *dot_addr
uint8_t *buf
gui_img_t *emoji_img

struct MEM_FONT_LIB

mem char struct end
Public Members
uint8_t *font_file
uint8_t font_size
FONT_SRC_MODE type
uint8_t *data

struct GUI_FONT_HEAD_BMP

4.2. Font Porting 128

RTKIOT GUI Documentation, Release v0.0.0.1

Public Members

uint8_t head_length
uint8_t file_type

uint8_t version([4]

uint8_t font_size

uint§_t rendor_mode
uint8_t bold

uint8_t italic

uint8_t scan_mode

uint8_t index_method
uint8_t crop

uint8_t rsvd

uint32_t index_area_size
uint8_t font_name_length

uint8_t *font_name

Enums

enum TEXT_CHARSET

text rect struct end
text encoding format enum

Values:

enumerator UTF_8

enumerator UTF_16

4.2. Font Porting 129

RTKIOT GUI Documentation, Release v0.0.0.1

enumerator UTF_16LE
enumerator UNICODE_ENCODING
enumerator UTF_16BE
enumerator UTF_32LE

enumerator UTF_32BE

Functions

uint16_t process_content_by charset (7EXT _CHARSET charset_type, uint8_t *content, uint16_t len,
uint32_t **p_buf_ptr)

Converts content from a specified charset to Unicode code points.
Parameters
« charset_type - The charset type of the content.
» content - Input content to be converted.
 len - Length of the input content in bytes.
e p_buf_ptr - Pointer to the buffer that will hold the Unicode code points.

Returns
The length of the Unicode code points array.

uint32_t get_len_by_char_num (uint8_t *utf8, uint32_t char_num)
Get the len by char num object.

Parameters
- utf8 -
» char_num -

Returns
uint32_t

uint32_t generate_emoji_file_path_from_unicode (const uint32_t *unicode_buf, uint32_t len, char
*file_path)

Function to generate file path based on a given Unicode sequence.
Parameters
« unicode_buf -
e len-
- file_path -
Returns

int

struct gui_text_rect_t

text rect struct start

4.2. Font Porting 130

RTKIOT GUI Documentation, Release v0.0.0.1

Public Members

int16_t x1

intl6_tyl

int16_t x2

intl6_ty2

int16_t xboundleft
int16_t xboundright
int16_t yboundtop

int16_t yboundbottom

4.3 HoneyGUI Porting

HoneyGUI is a lightweight embedded GUI system optimized for Realtek series chips. This document will guide you
through compiling the HoneyGUI library on different Realtek chip platforms, including both Armclang and Armcc com-
piler environments.

4.3.1 Important Notes

* Ensure Keil MDK and CMake are properly installed
¢ Make sure all required dependencies are installed before compilation
* If compilation errors occur, verify the chip model specification
¢ Check compiler path settings:
— Armcc compiler default path: C:/Keil_v5/ARM/ARMCC/bin
— Armclang compiler default path: C:/Keil_v5/ARM/ArmCompilerforEmbedded6.22/bin

— If installation paths are different, modify compiler paths in CMake configuration accordingly

Fig. 2: Default path for Armcc

Fig. 3: Default path for Armclang

4.3. HoneyGUI Porting 131

RTKIOT GUI Documentation, Release v0.0.0.1

4.3.2 Build Requirements

e CMake 3.15 or above
e Keil MDK 5 or above
¢ Windows OS

4.3.3 Armcc Compilation

Supported chips:
¢ RTL8773E (default)
¢ RTL8763E
e RTL8762G
e RTL8763D
Build steps:
1. Open cmd window in the armcc directory of the project path, generate build files using command cmake -G
"MinGW Makefiles" -DSOC=RTL8763D -B "./temp":
E:\HoneyGUI\lib\armcc>cmake -G "MinGW Makefiles" -DSOC=RTL8763D -B "./temp"
soc = RTL8763D
-- The C compiler identification is ARMCC 5.6.960
-- The CXX compiler identification is ARMCC 5.6.960
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Configuring done (2.7s)
-- Generating done (0.9s)
-- Build files have been written to: E:/HoneyGUI/lib/armcc/temp
Note: If chip model is not specified, RTL8773E will be used by default.
2. Enter temp directory to build project, using commands cd temp cmake --build
E:\HoneyGUI\lib\armcc>cd temp
E:\HoneyGUI\1lib\armcc\temp>cmake --build .
[1%] Building C object CMakeFiles/gui.dir/E_/HoneyGUI/realgui/3rd/cJSON/cJSON.o
[2%] Building C object CMakeFiles/gui.dir/E /HoneyGUI/realgui/3rd/ezXML/ezxml.o
[3%] Building C object CMakeFiles/gui.dir/E_/HoneyGUI/realgui/3rd/nanovg/base/
—-nanovg.o
[100%] Linking C static library gui.lib
[100%] Built target gui
3. Install resources, using command cmake --build . --target install:
E:\HoneyGUI\lib\armcc\temp>cmake --build . --target install
[100%] Built target gui
Install the project...
-- Install configuration: ""
-- Installing: E:/HoneyGUI/lib/armcc/install/lib/gui.lib
4.3. HoneyGUI Porting 132

RTKIOT GUI Documentation, Release v0.0.0.1

4. Generated resource file locations:
* Header files: E:/HoneyGUI/lib/armcc/install/include
* Library file: E:/HoneyGUI/lib/armcc/install/lib/gui.lib

4.3.4 Armclang Compilation

Supported chips:
* RTL8762G (default)
* RTL8762D
e RTL8773E
e RTL8773G
Build steps:

1. Open cmd window in the armclang directory of the project path, generate build files using command cmake -G
"MinGW Makefiles" -DSOC=RTL8762G -B "./temp":

E:\HoneyGUI\lib\armclang>cmake -G "MinGW Makefiles" -DSOC=RTL8762G -B "./temp"
soc = RTL8762G

-- The C compiler identification is ARMClang

-- The CXX compiler identification is ARMClang

-- Configuring done
-- Generating done
-- Build files have been written to: E:/HoneyGUI/lib/armclang/temp

Note: If chip model is not specified, RTL8762G will be used by default.

2. Enter temp directory to build project, using commands cd temp cmake --build

E:\HoneyGUI\1lib\armclang>cd temp
E:\HoneyGUI\lib\armclang\temp>cmake --build .
[0%] Building C object CMakeFiles/gui.dir/...

[100%] Built target gqui

3. Install resources, using command cmake --build . --target install:

E:\HoneyGUI\lib\armclang\temp>cmake --build . --target install
[100%] Built target gui

Install the project...

-- Installing: E:/HoneyGUI/lib/armclang/install/lib/qui.lib

4. Generated resource file locations:
» Header files: E:/HoneyGUI/lib/armclang/install/include
* Library file: E:/HoneyGUI/lib/armclang/install/lib/gui.lib

4.3. HoneyGUI Porting 133

RTKIOT GUI Documentation, Release v0.0.0.1

4.3.5 Project Porting Example

This example demonstrates porting to RTL8773GWP dashboard project.
1. Copy the compiled resource files to the project directory:
* Copy header files (.h) to the project resource directory
e Copy library file (gui.lib) to the project resource directory
2. Project Configuration:
¢ Add header file path in Keil MDK

» Link gui.lib in project settings

Fig. 4: Copy header files to project directory

Fig. 5: Link library file to project directory

4.3. HoneyGUI Porting

134

CHAPTER
FIVE

SAMPLES

We have provided some example applications to help everyone become familiar with using this environment. The
sample program will continue to increase.You can choose from the following configurations.The configuration file is
menu_config.h.

Fig. 1: Configuration Selection

The entry point for any application is:

[GUI_INIT_APP_EXPORT(app_init) ;

5.1 Calculator

This example demostrates how to develop a simple “Calculator APP”, from which you can learn and understand the basic
methods and processes of developing a ui application. The “Calculator” works just like a traditional calculator, using
button widget for user input and text widget for display. Watch the demo video below to see its full functionality.

5.1.1 Source File

To help learn and be familiar with the development, you can find all source files you may need in path realguiexam-
plescreen 448 368. The source file for this demostration is app _calculator. c, you can find it in the path
mentioned for more details.

5.1.2 Two Steps

1. Declare the app structure

The app structure saves all the information of ui. Developers should initialize the app structure with the app name and ui
design function.

#include <gui app.h>
static void app calculator ui design(gui app_t *app);

static gui app t calculator =

{

.screen =

{

(continues on next page)

135

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

.name = "calculator",

}

.ui _design = app _calculator ui design,
g
/*
* Public API to get app structure
*/
gui app_t *get app calculator(void)
{

return &calculator;
}

2. Declare the app ui design function

The app ui design function adds all the widgets required to form a complex ui. In this example, we add a window widgets
and draw the calculator ui.

static void app calculator ui design(gui app_t *app)
{
gui win t *win = gui win create(&app->screen, "back win", 0, 0, gui get screen
—width(),
gui get screen height());

gui calculator create(win, "calculator", 0, 0, 454, 454);

5.2 86Box

This example demostrates how to develop a RealUI 86Box APP, from which you can learn and understand the basic
methods and processes of developing a ui application.

5.2.1 Source File

» APP package realguiexamplescreen 480 480rootappbox
* UI Design project RVisualDesigner-v1.0.5.0Demo480x480boxbox480x480. rtkprj

5.2.2 Ul Design

RVisualDesigner

» RealUI 86Box utilizes RVisualDesigner to complete Ul design. For the first-time usage of RVisualDesigner, please
refertoRVisualDesigner-v1.0.5.0RTKIOT Visual Designer User Guide EN.pdf toobtain
a detailed development guide.

* Find and open the example UI design project in the specified path:

¢ Click on Export and then Simulate in succession to complete the export and launch the simulation. Once the simu-
lator window is launched, the 86Box APP icon will be displayed. Clicking on it will take you to the corresponding
APP.

5.2. 86Box 136

RTKIOT GUI Documentation, Release v0.0.0.1

¢ When entering the APP, you will see the same UI content as in the RVisualDesigner design project in the simulator
window. Therefore, this design mode has the feature of “What You See Is What You Get” (WYSIWYG). Devel-
opers can drag widgets from the ToolBox to the canvas to create widgets for the current page. After adding image
resources to the project, the widgets can be configured and linked to custom images. The hierarchy relationship
between widgets will be displayed through the Widget tree.

¢ This tool requires adding pictures in advance, and then dragging the widgets in the ToolBox to the middle screen
to lay out the same UI as the current Widget tree.

5.2.3 Javascript

¢ Non-default effects and logic for widgets currently need to be implemented by developers using JavaScript in the
current version. For example, control interactions include switch widgets switching images on click, tab widgets
sliding , etc. Please refer to JavaScript syntax to learn more about the JavaScript-based UI development approach.

Gestures

In the JS file realguiexamplescreen 480 480rootappboxbox. js, the control and interaction logic of the
Ul is implemented.

Light Control Switch

* The callback functions for opening and closing the switch widget named “kitchen_switch” are registered sequen-
tially. When the switch widget “kitchen_switch” is opened, its callback function Led10nFunc () will be triggered
and called.

 The control of the lights in this example is abstracted as a Gpio object. Each light corresponds to a Gpio object, and
its value is assigned using the writeSync () function, which is defined in the underlying layer to accommodate
different smart home communication control protocols and control methods.

// define an Gpio object
var LED1 = new Gpio(0, 'out');
function ledlOnFunc(params) {
if (sleep flag) {
LED1.writeSync(0)
}
}

// register callback function
sw.getElementById('living switch")
sw.switch on(ledlOnFunc)

sw.switch off(led10ffFunc)

5.2. 86Box 137

RTKIOT GUI Documentation, Release v0.0.0.1

Tab Jumping Switch

1. Register a tab slide callback for the tabview widget. When the tab is changed by sliding, update the current tab
index and synchronize the UI display state.

2. Register a jump control callback function for each switch that controls the navigation. When called back, pass the
index value as a parameter to indicate the tab to be navigated to.

3. In the callback function, use the jump () function to navigate and synchronize the Ul display state.

tab.getElementById('tabview0")
var tabJump = {
cur_tab x: 0,
nxt tab x: 0,
cur_tab y: 0,
nxt tab y: 0
}
function sw_jump_ tab(params) {
// console.log('jump', params)
tabJump.nxt_tab x = params

if(tabJump.nxt tab x !'= tabJump.cur tab x)

{

sw_jump_turnoff();

tab.jump(params);

tabJump.cur_tab x = tabJump.nxt tab x
}

}

function sw_jump keep on(params) {
// console.log('sw_jump keep on ', params)
Id prefix = 'sw tab';
if(params == tabJump.nxt tab x)
{
sw.getElementById(sw _getId(params));
sw.turnOn();

}

function tab slide(params) {
// console.log('tab _slide')
var cur_tab = tab.getCurTab()

tabJump.nxt tab x = cur_tab.x;
sw_turnOn(tabJump.nxt tab x);
sw_turnOff(tabJump.cur tab x);
tabJump.cur_tab x = cur_tab.x;

}

// tab change
tab.onChange(tab slide)

// jump tab0
sw.getElementById('sw tab0')
sw.onOn(sw_jump_ tab, 0)
sw.onOff(sw_jump keep on, 0)

5.2. 86Box 138

RTKIOT GUI Documentation, Release v0.0.0.1

5.3 LiteGFX

5.3.1 QubDai Introduction

QubDai Technology is a software service company that leverages its self-developed LiteGfx framework to fully harness the
performance of various chips, providing customers with cross-platform, one-stop GUI solutions and a plethora of dazzling
visual effects products. By utilizing our proprietary 2.5D effects framework, we simulate 3D technology and integrate
particle system physics engine technology. All 2.5D effects are embedded within LiteGfx Designer, allowing customers to
easily use and personalize them to create unique visual identities. QuDai Technology will continuously enrich its product
portfolio in 2.5D technology, helping clients stand out in the fiercely competitive market. We firmly believe that excellent

visual design is the key to enhancing a company’s brand value and market competitiveness. .. raw:: html

 <div style="text-align: center”><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/wave.gif” width= “400” /></div>

 <div style="text-align: center’><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/polyhedron.gif” width= “400” /></div>

 <div style="text-align: center”><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/shadow.gif” width= “400” /></div>

 <div style="text-align: center’><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/cube.gif” width= “400” /></div>

 <div style="text-align: center’><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/particle.gif” width= “400” /></div>

 <div style="text-align: center”><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/fallen.gif” width= “400” /></div>

 <div style="text-align: center’><img src="https://docs.realmcu.com/HoneyGUIl/image/sample/

LiteGFX/dial.gif” width= “400” /></div>

 <div style="text-align: center”><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/energy.gif” width= “400” /></div>

 <div style="text-align: center’><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/slide.gif” width= “400” /></div>

 <div style="text-align: center”><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/overturn.gif” width= “400” /></div>

 <div style="text-align: center’><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/ball.gif” width= “400” /></div>

 <div style="text-align: center”><img src="https://docs.realmcu.com/HoneyGUI/image/sample/

LiteGFX/number.gif” width= “400” /></div>

5.3.2 Source Code

QuDai components are integrated into HoneyGUI as a third-party library and used as a Widget in the RealGUI engine.

This integration includes three main parts: core library, control adaptation, and platform support.

Source code path: HoneyGUI\realgui\3rd\litegfx

| -HoneyGUI-Adapt
| gui widget litegfx.c
| gui widget litegfx.h

(continues on next page)

5.3. LiteGFX

139

https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/wave.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/wave.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/polyhedron.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/polyhedron.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/shadow.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/shadow.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/cube.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/cube.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/particle.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/particle.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/fallen.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/fallen.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/dial.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/dial.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/energy.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/energy.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/slide.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/slide.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/overturn.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/overturn.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/ball.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/ball.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/number.gif
https://docs.realmcu.com/HoneyGUI/image/sample/LiteGFX/number.gif

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

tab_app_energybox.c
tab_app notifications.c
tab_app prsim.c

tab _app prsim refl.c

tab _app soccer.c

tab watchface butterfly.c
tab watchface digitclock.c
tab watchface flowerfall.c
tab watchface windmill.c

|
I
I
|
I
I
|
I
I
|
| -platform
| 1x_platform log.c
| 1x_platform log.h
| 1x_platform memory.c
| 1x_platform_memory.h
| 1x_platform _new.cpp
| 1x_platform time.c
| 1x_platform _time.h
|
[-vglite
| liblx vglite gcc.a
| 1x_vglite.lib
I
| -include
| -interface
1x _vglite api.h

Widget Adaptation Layer
The code in this directory is a wrapper layer provided by QuDai to adapt to HoneyGUI. The files
gui widget litegfx.c/h are for the widgets, while files starting with tab_ are sample code. Users can refer

to these sample codes to implement their own upper-layer effects. Note that essentially, using this method still involves
calling the RealGUI engine to display related effects. This widget supports the tiled approach for FrameBuffer.

Platform Adaptation Layer

O S

5.3. LiteGFX 140

RTKIOT GUI Documentation, Release v0.0.0.1

Core Lib

It provides the Windows GCC version of liblx vglite gcc.a and the embedded environment version of
1x_vglite. lib. Please pay attention to the compiler version.

5.4 Status Bar

* This is a new style status bar. In the non-pull-down state, only the real-time time in small fonts is displayed at the
top of the screen.

¢ Click on the top to pull down the status bar. When pulling down, the mask color gradually becomes opaque and
the time text becomes larger.

 After pulling down to a certain extent, the status bar becomes fully expanded, and the date and message notification
will be displayed.

5.4.1 Implementation
File

Function static void status bar(void *parent, gui obj t *ignore gesture) islocated in
file realguilexample\screen 454 454\gui menulapps_in menu.c.

Design

¢ In this status bar, the window widget is the root node. A white semi-transparent background of the status bar is
drawn using the rectangle drawing function. Three text boxes are nested, representing time, date, and notification
messages, respectively. Among them, the time text box uses a function to cache into an image because the time
display needs to be scaled. The rectangular background and the text of the date and notification messages are
initially hidden. Touch screen interactive effects are implemented in the animation callback function of the root
node window widget.

¢ In the animation callback function of the window, first update the contents of the text box for time and date to
real-time time and date, in the formats of “07:55” and “Tue, Apr 16” respectively. Then, read touchpad data,
determining the display effect of the status bar based on current touch screen information such as gestures, for
instance, whether to hide the background, whether to hide the date and notifications, change background trans-
parency, time text box reduction scale, and so on.

» The status_bar function has a parameter ignore_gesture, which takes the pointer to a widget. This
parameter is used to resolve conflicts between gestures on the widget and the status bar. When such a conflict is
encountered, the gesture interaction of the respective widget is deactivated through this piece of code: i (ig-
nore _gesture) { ignore gesture->gesture = 1; }. Here, setting the gesture attribute to
‘1" turns off the gesture response of the widget in question.

5.4. Status Bar 141

RTKIOT GUI Documentation, Release v0.0.0.1

5.5 Fruit Ninja

This example demonstrates how to develop a simple “Fruit Ninja” APP, from which you can learn and understand the
basic methods and processes of developing a UI application. Earn points by cutting fruits until you cut a bomb and the
game is over. Watch the demo video below to see its full functionality.

5.5.1 Requirements

Refer to the Installation section of Ger Started .

5.5.2 Source File

To help learn and be familiar with the development, you can find all source files you may need in path realgui\
example\screen 454 454. The source file for this demostration is app_fruit ninja box2d.cpp, you
can find it in the path mentioned for more details.

5.5.3 Configurations

#define SCREEN WIDTH 454 // Set according to the screen width

#define SCREEN _HEIGHT 454 // Set according to the screen height

#define HEIGHT OFFSET 100 // Set the screen height offset for refreshing fruit from,
—the bottom of the screen

5.5.4 Usage Steps

Step 1: Declare the app ui design function

/**

* @rief Start Fruit Ninja APP by creating a window,

% setting the animation function of the window

o and initializing some variables.

* @param obj The parent widget where the APP's window 1is nested.
WY

void fruit ninja design(gui obj t *obj)

void app fruit ninja design(gui_obj t *obj)

{
}

app_fruit ninja::fruit ninja design(obj);

5.5. Fruit Ninja 142

RTKIOT GUI Documentation, Release v0.0.0.1

Step 2: Call function

extern void app fruit ninja design(gui obj t *obj);
app_fruit ninja design(GUI_APP ROOT_ SCREEN);

5.5.5 Design Ideas

* In this app, box2d was used to create solids to simulate the movement of objects in a gravitational environment,
given parameters such as the initial velocity of the x-axis and y-axis during initialization.

/* Add dynamic bodys */

b2BodyDef ballBodyDef;

ballBodyDef.type = b2 dynamicBody;

ballBodyDef.position.Set(4, SCREEN HEIGHT + HEIGHT OFFSET * P2M);
ballBodyDef.angularVelocity = -314; //-PI rad/s
ballBodyDef.linearVelocity.Set (10, -20); // Move up

body st = world.CreateBody(&ballBodyDef);

¢ The radius of the solid is set to a small value in order to minimize the effect of objects colliding with each other,
since mutual collisions are detrimental to the gameplay.

/* Creat body shape and attach the shape to the Body */
b2CircleShape circleShape;

circleShape.m_radius = 0.2; // Small radius reducing the impact of,,
—collisions

* The position and rotation angle of the fruits (and bomb) are updated in the callback function using the solid’s center

point mapping and displayed in the image component. The position and initial velocity of the solid is reset when
the position of the fruit is outside the display interface.

/* Get the position of the ball then set the image location and rotate,
it on the GUI */

b2Vec2 position = body st->GetPosition();

if (position refresh((int) (position.x * M2P - RADIUS ST), (int)(position.
—y * M2P - RADIUS ST),

img_strawberry, body st))

{

gui img set attribute(img strawberry, "img strawberry", FRUIT NINJA
—STRAWBERRY BIN,

img strawberry->base.x, img strawberry->base.

=Y);

fruit cut flag[0] = false;

gui img set location(img cut arry[0], O, SCREEN HEIGHT + HEIGHT
—0FFSET) ;
¥

J

¢ Cutting fruit uses the structure touch_info, detecting the touch point release indicates the completion of a cut (to

get the initial point of the touch screen and the displacement of the x-axis and y-axis), and the content of the cut
will be judged.

/* Cutting judgment */

GUI TOUCHPAD IMPORT AS TP // Get touchpoint
if (tp->released)

{

bool bomb flag = cutting judgment(win, img strawberry, img banana, .,

(continues on next page)

5.5. Fruit Ninja 143

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
—1img peach, img watermelon,
img _bomb, tp, img cut arry, fruit
—cut_flag);
}

« If there are two intersection points between the cut line and the picture rectangle, it means that the cut is valid.

line has two intersections with rectangle(img coordinate, img w, img h,
—tp start, tp_end,
img rotate

—angle);

J

* Note that when calculating the intersection point, the rotated endpoint information of the picture needs to be
brought into the calculation of the rotation angle to be consistent with the display, so that the accuracy of the
cutting judgment can be improved.

/* Calculate the rectangle's four rotated points */

Point rotated rect min = rotate point(rect min, center, angle); // Left-
éggﬁt rotated rect max = rotate point(rect max, center, angle); // Right-
Eggﬁznrotated_rect_pZ = rotate point(rect p2, center, angle); // Left-
Eagﬁgnrotatedirectng = rotate point(rect p3, center, angle); // Right-
—top

» Update the fruit picture to two pictures after cutting (corresponding to two gui_img_t pointers) and count the score.
Multiple different objects can be cut in a single cut.

/* Refresh half-cut fruits position */
if (fruit cut flag[0])
{

gui img set location(img cut arry[0], GUI BASE(img strawberry)->x +_,
10,

GUI BASE(img_strawberry)->y + 10);

gui img rotation(img cut arry[0], gui img get transform degrees(img
—strawberry),

gui _img get width(img cut arry[0]) / 2,

gui img get height(img cut arry[0]) / 2);

}

¢ Note that a flag can be used to mark the cut status of the fruit to prevent scoring errors as well as to facilitate
updating the position of the cut picture.

* When the cut fruit moves outside the display it will reset the position and initial velocity of the solid and restore the
cutting effect.

gui img set attribute(img strawberry, "img strawberry", FRUIT NINJA
—STRAWBERRY BIN,

img strawberry->base.x, img strawberry->
—.base.y);
fruit cut flag[0] = false;
gui img set location(img cut arry[0], 0, SCREEN HEIGHT + HEIGHT OFFSET);

5.5. Fruit Ninja 144

RTKIOT GUI Documentation, Release v0.0.0.1

5.6 Music Player

» Ul design: Figma - Music Mobile App UI

¢ Intuitive Three-Layer Design: Navigate effortlessly between three distinct interfaces. The central interface features
a sleek display of the current track’s album cover along with essential playback widgets.

» Swipe Navigation: With a simple swipe, transition to the top interface to access your song list.

 Lyric Display: Swipe down to reveal the lyrics interface, which is a full-screen display of lyrics, synchronized with
the music.

¢ Smooth Animation: Enjoy a beautiful and fluid transition between interfaces with unique zoom animation, bringing
the album cover to life as you switch between viewing options.

5.6.1 Implementation
Code

Function void app _music ui design(gui obj t *obj) is located in file realgui/example/
screen 454 454/gui _menu/app_music.cpp.

Widgets Tree Design

Fig. 2: Widgets Tree Design

5.7 Timer

* This application features two interfaces Timer & Stopwatch, easily switched with a tap on the two buttons at the
bottom.

e Timer Interface: Start the timer with a tap, and watch the seconds increment on the screen.

 Stopwatch Interface: Select your start time using three adjustable rollers for hours, minutes, and seconds. Upon
starting, an animation begins as your selected time centers and begins countdown.

5.7.1 Implementation
Code

Function app_clock ui design is located in file realgui/example/screen_454 454/gui _menu/
app_clock.c.

5.6. Music Player 145

https://www.figma.com/community/file/1180142936953078905/music-mobile-app-ui

RTKIOT GUI Documentation, Release v0.0.0.1

Widgets Tree Design

Fig. 3: Timer Widgets Tree Design

5.8 Watchface Market

» Watchface UI design: Figma - Watch Face UI Screens
« This application makes it easy to browse and install new watch faces to suit your style.

» Easy Browsing: Navigate through a clear, two-column layout of watch face previews. Scroll up and down to see
your options.

* Preview and Select: Tap any watch face preview to see a fade-out effect, then select it to switch your watch to the
new face.

* Quick Access: Long-press your current watch face to quickly open the Face Market App and explore new designs.

¢ Simple Installation: To install a new watch face, just copy the face package to the specified folder on your smart-
watch.

5.8.1 Implementation

Code

Function GUI APP_ENTRY (APP_WATCHFACE MARKET) is located in file realgui/example/
screen 454 454/gui menu/watchface market.c.

Widgets Tree Design

Fig. 4: Market Tree Design

5.8. Watchface Market 146

https://www.figma.com/community/file/1219626215185233520

CHAPTER
SIX

TOOL

In UI design, it is necessary to use Image Convert Tool or Font Convert Tool to convert images or fonts into binary files.
Then, Pack Tool is used to package all the UI resource files, and finally, MP Tool is used for burning. This section will
introduce the usage of these four tools.

6.1 Image Convert Tool

6.1.1 Image Format Conversion

Convert pictures in various formats into RGB raw pictures
* Open the converter. Please refer to this section for the download link of the image conversion tool: Tool.

* The operation steps and detailed instructions are as follows:

1. Open the image folder.

Open the settings.

Select the output folder.

Check the color information header.
Choose the image format to be configured.

Set the conversion parameters.

NS A » N

Convert.

Configuration

¢ Color head : BeeGUI wants this head to display.

* Big-endian : Whether the input image is big-endian.

* Compress : Enable image compression.

¢ MixAlphaChannel Flag : Whether to mix alpha channel to rgb when converting rgba to rgb or rgb565.
* Scan Mode : Select whether the scan direction is horizontal or vertical, BeeGUI only wants horizontal.

* Color Space : Select colorSpace (RGB565, RGBA, BINARY ...), BeeGUI can display all of them.

147

RTKIOT GUI Documentation, Release v0.0.0.1

Color Space

* RGB565: Colorful but with low rendering cost and storage. 2 bytes per pixel.

Red Green Blue
Sbit 6bit Sbit

* ARGB8565: 24-bit ARGB mode.

Opacity Red Green Blue
8bit Sbit 6bit Sbit

* RTKRGAB: 16-bit RGAB mode.

Red Green Opacity Blue
Sbit 5bit 1bit Sbit

RGB : 24-bit RGB mode. 3 bytes per pixel.

Red Green Blue
8bit 8bit 8bit

* ARGB : True color with opacity. Enhance the display quality with transparency effects. 4 bytes per pixel.

Opacity Red Green Blue
8bit 8bit 8bit 8bit

¢ BINARY : Use one bit for a pixel.
RTKARGBS8565 : RTK 24-bit ARGB8565 mode.

Opacity Opacity .. Red Green Blue Red Green Blue
8bit 8bit ... 5bit 6bit 5bit Sbit 6bit 5bit

6.1.2 Output Files

The following files will be generated.

By using the image conversion tool, we can convert the three JPG files a, b, and cintothree binary files
a, b, and c.

Place the binary file into the root folder of the packaging directory. For the packaging process, please refer to
the Pack Tool section.

6.1. Image Convert Tool 148

RTKIOT GUI Documentation, Release v0.0.0.1

6.2 Font Convert Tool

Font conversion tool features: Obtain the Unicode code corresponding to all characters to be converted from the standard
internal code table (codepage file), custom Unicode code table (or supplementary code table .txt file, custom .cst file),
and find the vector font data corresponding to characters according to the Unicode code from the font file (such as .ttf).
Convert to a bitmap, and the output is a .bin file.

6.2.1 Font Bin Generation

Please refer to the following steps for how to generate files:

1. Copy the Font library file to the directory \Font Convert Tool\font.

2. Please refer to the documentation under the directory \Font Convert Tool\doc for the specific meanings
of each parameter to configure font parameters by editing FontConfig.json.

3. Please open setting.ini and modify the optional configuration items.

4. Double-click fontDirctionary.exe and the font bin will be generated.

6.2. Font Convert Tool 149

RTKIOT GUI Documentation, Release v0.0.0.1

6.2.2 FontConfig.json Parameter Description

Table 1: FontConfig.json parameter description

Field name Field meaning

codePages A list of selected characters arranged in a specific order for the text of a language. Mul-
tiple sets can be configured.

cstPaths Binary Unicode code point CST file path. Multiple paths can be set.

customer Vals User-defined continuous Unicode characters. Multiple groups can be set.

firstVal The starting value of a custom continuous Unicode character.

range A custom number of consecutive Unicode character.

mappingPaths User-defined Unicode character set file path. Multiple groups can be set.

fontSet Used to specify font-related settings to be converted.

bold Specifies whether converted characters are bolded.

italic Specifies whether the converted characters are slanted.

scanMode Specifies how the converted character data is saved. If the value is “H”, the fonts are
saved by row; if the value is “V”, the fonts are saved by column.

fontSize Specifies the converted character size.

font Specifies the font file to use for the conversion.

renderMode Specifies how many bits are used to represent a pixel in the converted character bitmap.
Supports 1/2/4/8.

indexMethod Specifies the index mode of the re-index area of the output bin file after conversion, and
fills the address index with O; offset index 1. When the number of characters exceeds
100, it is recommended to choose index mode 0.

crop Compresses font file size. Always on is recommended. Currently only crop with In-

dexMethod=0 is supported.

6.2.3 Setting.ini Parameter Description

Table 2: Setting.ini parameter description

gamma

rotate

1 The gamma value is a parameter used to describe the nonlinear
relationship between input pixel values and output brightness.
The higher the value, the higher the text brightness.

0 Font Rotation Angle. 0: No rotation. 1: Rotate 90° clockwise.
2: Rotate 90° counterclockwise.

6.3 Pack Tool

6.3.1 RTL87x2G and RTL8762D

RTLS87x2G is the abbreviation of a series IC type.

The packaging process for the RTL87x2G and RTL8762D is the same. Take RTL8762G as an example as follows.

Before starting, select the appropriate demo under the sdk directory (\subsys\gui\realgui\example\
screen 800 480\root image 800 480), or create a new packaging directory based on the example. Then
copy the bat and py scripts to that directory, ensuring that the root folder and the bat and py
scripts exist under the directory.

6.3. Pack Tool

150

RTKIOT GUI Documentation, Release v0.0.0.1

1. Copy resource all the generated bin files to the root folder.

2. Double-click the batch file (. bat) to run it, which will execute the packaging process and generate .bin file
and . h file.

3. The .h is the address offset of each file in the file system, which can be accessed directly without using the file
system. Before developing gui code, please add the folder containing . h to the include directory.

4. Use the MPTool tool to burn the . b1in file into Flash memory.

6.3.2 RTL8763E and RTL8773DO

RTLS8763E is the name of a series IC type, including RTL8763EWE-VP/RTL8763EW-VC. The packaging process for
RTLS877DO is similar to that of RTL8763E.

Before starting, navigate to the SDK directory (\tool\Gadgets\gui package tool) and choose the appro-
priate IC directory. Select the 8763E directory for RTL8763EW and the 87x3D directory for RTL8773DO.

The process for generating user data is as follows:

1. Copy all the generated bin files to the folder \tool\Gadgets\gui package tool\8763E\root.

2. Double-click gen_root image.bat in the \tool\Gadgets\gui package tool\8763E directory
to execute the script and generate an image of the root folder. A new .bin file and . h file will appear in the
directory.

3. Between them, . bin is the image file, and . h is the address offset of each file in the file system, which can be
accessed directly without using the file system.

6.3.3 RTL8773E

RTL8773E is the name of a series IC type, including RTL8773EWE/RTL8773EWE-VP. The user data packaging pro-
cess is as follows:

Generate Root Bin

1. Copy generated images bin to this folder \src\app\watch\gui application\root image\root\
8773e _watch and Copy generated font bin to this folder \src\app\watch\gui application\
root image\root\font.

2. Modify build address: You need to adjust the address to 0x238b400 by modifying this file
mkromfs 0x4400000.bat (python bin mkromfs 0x4400000.py --binary --addr
0x238b400 root root(0x4400000) .bin). The - -addr corresponds to the flash map userdata address
+0x400 (image header size)

3. Double-click mkromfs 0x4400000.bat in the \src\app\watch\gui application\
root image directory to execute the script and generate an image of the root folder. A new bin
root (0x4400000) .bin file and hfile ui_resource.h will appear in the directory.

4. Between them, .bin is the image file, and . h is the address offset of each file in the file system, which can be
accessed directly without using the file system.

6.3. Pack Tool 151

RTKIOT GUI Documentation, Release v0.0.0.1

Note: The generated ui_resource.h requires the following code to be added manually

#1f defined WIN32
#else
#include "flash map.h"

#define MUSIC NAME BIN ADDR APP_DEFINED SECTION_ ADDR

#define MUSIC HEADER BIN_ADDR (MUSIC NAME BIN ADDR + 0xA000)

#define MUSIC NAME BIN SIZE (MUSIC HEADER BIN _ADDR - MUSIC NAME BIN_ADDR)
#define MUSIC HEADER BIN SIZE 0x5000

#endif

Adding Header Information

Using the MPPG Tool to add header information to user data files, the process is as follows:

1. In the menu, select Tool*Prepend header for user data.
2. Add the path to flash_map.ini.
3. Add the path to the user data file (root xx.bin).

4. Generate the burnable user data file.

Note: The Max size must be larger than the Actual size; otherwise, the user data size in the flash_map needs to be
changed.

6.4 MP Tool

MP Tool supports debugging mode and batch production mode, integrating packaging and flash map generation functions.
* Debug Mode: Offers developers a platform for debugging and feature development.

* MP Mode: Provides an array of capabilities, including the ability to program up to 8 devices concurrently and
modify the device’s Bluetooth address.

6.4.1 Download to the EVB

Select the chip type and language in the MP Tool startup interface, taking RTL8762G as an example.

Fig. 1: MP Tool Startup Interface

* Load the necessary files for burning, including flash map, System Config File, APP Image, etc.
* Select User Data.

6.4. MP Tool 152

RTKIOT GUI Documentation, Release v0.0.0.1

Fig. 2: MP Tool Main Interface

* Download the generated image file to the specified address (such as the file system mount address), where the
8762G address is 0x04400000.

Fig. 3: User Data Loading Interface

 After the file preparation is completed, first check the UART port. If it is normal, it will display Ready. Then open
the UART port and display OK. Once this is done, click Download to start the burning process.

Fig. 4: Enter the Burning Mode Interface

6.4. MP Tool 153

CHAPTER
SEVEN

DESIGN SPEC

This section describes the workflow of the RealUI system, which involves the process from input data to displaying on
the LCD.

7.1 RealUl System

RealUI system is an efficient embedded solution for display projects based on HoneyGUI.

7.1.1 RealUl Workflow

The workflow of the RealUI system is mainly divided into four steps.

System

System initialization mainly includes the initialization of the system clock, the initialization of peripherals and the initial-
ization of other modules of the project, such as PSRAM, LCD, TP, and Bluetooth.

GUI Server

First, the parts of the GUI port that have been filled in advance are initialized, including the operating system, display,
input, and file system. The GUI server thread is then created and the GUI server runs continuously in GUI thread.

GUI Application

A GUI application is a series of display interfaces consisting of multiple widgets. A GUI app is a series of display
interfaces consisting of multiple widgets. In order to run a GUI APP, it needed to be started.

154

RTKIOT GUI Documentation, Release v0.0.0.1

GUI Server Task

GUI server is the running function of GUI task, and its specific running process is divided into six parts:

1. GUI APP EXIST: First, the currently running GUI APP needs to be obtained. When the GUI detects that there is
a running GUI APP, it will proceed to the next step;

GET LCD DATA: Get real-time information about the screen;
GET 7P DATA: Get real-time information about the touchpad and run the touch algorithm;
GET KB DATA: Get real-time information about the keyboard and run the keyboard algorithm;

A

OBJ DRAW: Drawing widgets in the APP, including functional operations and image processing.
6. UPDATE FB: Delivers the drawn results to the screen.

More detailed operation of the GUI APP can be found in the online documentation.

7.2 Input Subsystem

The Ul system can receive input from other peripherals in the device, typical input devices are touchpads and buttons.

This chapter describes how to use input devices in the UI system and describes the processing of input information in
detail.

7.2.1 Touchpad

The touchpad is one of the most commonly used input devices, and most of the time, the touchpad is integrated into the
display panel. The workflow for touch information is shown in the figure below.

Fig. 1: Touchpad Information Flow

Touchpad Hardware and Driver

Although different touchpad chips have different message data structures, the message always contains the touch status
and the coordinates of the touch point. In order to transmit coordinate information, a data bus is needed, and /2C is the
most commonly used data bus between touch chips and microprocessors.

In addition, different touch chips need to use different drivers according to their specifications, which needs to be ported.
Get Touchpad Data

In the port touchpad get data function, the touch information will be fetched in drv_touch_read, pro-
cessed briefly, and fed into the touch algorithm handler as raw data.

struct gui touch port data *port touchpad get data()
{
uintlé_t x = 0;
uintl6e_t y = 0;
bool pressing = 0;
if (drv_touch read(&x, &y, &pressing) == false)
{

(continues on next page)

7.2. Input Subsystem 155

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)
return NULL;
}
if (pressing == true)

{
}

else

{
}

raw_data.timestamp ms

raw data.width = 0;

raw_data.x coordinate = Xx;

raw data.y coordinate = y;

//gqui_log("event = %d, x = %d, y = %d, \n",
— raw_data.y coordinate);

return &raw data;

raw data.event 28

raw_data.event = 1;

os sys tick get();

raw_data.event, raw _data.x coordinate,

}

The data structure of the raw data is gui_touch port data t.

Touchpad Algorithm Processor

The code implementation of the touchpad algorithm processing is in the tp_algo_process function. Gesture recog-
nition is performed by judging changes in X-axis and Y-axis coordinate data, as well as touch time. The input types
obtained after the algorithm processing are as follows.

typedef enum
{
TOUCH_INIT = 0x100,
TOUCH_HOLD X,
TOUCH_HOLD Y,
TOUCH_SHORT,
TOUCH_LONG,
TOUCH DOUBLE,
TOUCH_ORIGIN FROM X,
TOUCH_ORIGIN FROM Y,
TOUCH LEFT SLIDE,
TOUCH RIGHT SLIDE,
TOUCH_UP_SLIDE,
TOUCH DOWN SLIDE,
TOUCH_SHORT BUTTON,
TOUCH_LONG_BUTTON,
TOUCH UP_SLIDE TWO PAGE,
TOUCH DOWN SLIDE TWO PAGE,

TOUCH_INVALIDE = Ox1FF,
KB_INIT = 0x200,
KB_SHORT = 0x201,
KB_LONG = 0x202,
KB_INVALIDE = Ox2FF,
WHEEL INIT = 0x300,
WHEEL_ING,

WHEEL FINISHED,

(continues on next page)

7.2. Input Subsystem 156

RTKIOT GUI Documentation, Release v0.0.0.1

(continued from previous page)

WHEEL_INVALIDE = Ox3FF,
} T _GUI_INPUT TYPE;

The algorithm processor fills in the touch _info t structure, which is available to all widgets.

Widget Response

Some widgets can respond to touchpad information, such as window widgets, button widgets, tab widgets, curtain widgets
and progress bar widgets. Among them, windows and buttons mainly respond to click events, tab, curtain and progress
bar mainly respond to swipe events. In addition, the display of tabs, curtains, and progress bars also depends on the touch
real-time coordinates in the touch_info_t structure.

Most of the widgets that process touch information are located in the corresponding preparation function, such as
win prepare. Use tp _get info to get touch information.

At the application level, different callback functions can be bound to different kinds of events in the following ways.

gui img t *hour;

gui img t *minute;

gui img t *second;

void show clock(void *obj, gui event t e)

{
if (GET_BASE(hour) == false)
{
gui obj show(hour, false);
gui obj show(minute, false);
gui obj show(second, false);
gui img set attribute((gui_img t *)home bg, "home bg", home[l], 0, 0);
}
else
{
gui obj show(hour, true);
gui obj show(minute, true);
gui_obj_show(second, true);
gui_img set attribute((gui img t *)home bg, "home bg", home[0], O, 0);
}
}
void enter homelist(void *obj, gui event t e)
{

gui log("enter tablist \n");
gui app_switch(gui_current app(), get app_homelist());

void design_ tab home(void *parent)
{

hour = gui img create from mem(parent, "hour", TIME HOUR BIN, 160, 192, 0, 0);

minute = gui_img create from mem(parent, "minute", TIME MUNITE BIN, 160, 192, 0,
-0);

second = gui_img create from mem(parent, "second", TIME SECOND BIN, 160, 192, 0,,
-0);

gui win t *clock = gui win create(parent, "clock", 0, 84, 320, 300);

gui obj add event cb(clock, (gui_event cb t)show clock, GUI EVENT TOUCH CLICKED, ,
—NULL) ;

gui obj add event cb(clock, (gui event cb t)enter homelist, GUI EVENT TOUCH LONG, ,
—NULL);
}

7.2. Input Subsystem 157

RTKIOT GUI Documentation, Release v0.0.0.1

In this example, a window named clock is created first, and when clicked, it executes the show clock function. When
prolonged, it executes the enter homelist function.

7.2.2 Keyboard

The workflow for keyboard information is shown in the figure below.

Fig. 2: Keyboard Information Flow

Hardware and Driver
The hardware design and driver program of the keyboard are relatively simple. Here, we will demonstrate this using a

single GPIO. For information on how to use GPIO, please refer to the instructions in the SDK. You can use the general
APIin rt187x2g gpio. C or the encapsulated APTin drv_gpio. C to accomplish the same tasks.

Get Keyboard Data

Inthe port kb get data function, the touch information will be fetched. Usersneed tofillport kb get data
according to their functional requirements and fill the structure with keyboard input information.

Keyboard Algorithm Processor

The code implementation of the keyboard algorithm processing is in the kb_algo process function. It can be
determined whether the type of input is short press or long press by pressing for a long time. The algorithm processor
fills in the kb_info_t structure, which is available to all widgets.

Response

There are two ways to respond to the keyboard, one is to respond to the processed key information in the widget such as
window, and the other is to respond directly to the press action when the key is received.

The first way is as follow.

static void win prepare(gui obj t *obj)

{
gui dispdev_t *dc = gui get dc();
touch _info t *tp = tp get info();
kb _info t *kb = kb get info();
if (kb->pressed == true)
{
gui obj enable event(obj, GUI_EVENT KB DOWN PRESSED);
}
}

For the second type, please refer to the GPIO user manual.

7.2. Input Subsystem 158

RTKIOT GUI Documentation, Release v0.0.0.1

7.3 Display Subsystem

The workflow of the display system is very complex, and there are different processes for different UI frameworks and
different widgets.

7.3.1 Display Workflow

As the most commonly used Ul input source, the image is used here as an example to illustrate the complete workflow
from the raw image to the screen, as shown in the figure below.

Due to the different hardware configurations of various types of /C, the RTL8772G chip platform is chosen here, and
RealUl is used as the Ul system to explain the image display workflow.

Fig. 3: Image Display Work Flow

Flash File System

The original image is converted into a file in a special format and then downloaded into flash. Flash is configured with a
pseudo-file system that provides image index information to the widget layer. After the simple migration of the file system
is complete, the standard file system can be used.

Please read the Image Convert Tool section for more information about image conversion.

Ul Widget

The image widget is the most basic UI widget used to display images. There are many widgets in the Ul system that draw
special images based on image widgets.

Here, the image widget loads the image data and reads the image information. It combines the UI design and the behavior
of the widget layer to provide image rendering requirements for the acceleration layer. Such as image movement, image
reduction and enlargement, image rotation and so on.

In addition, some of the hardware supports powerful GPU that can draw widgets with complex transformation effects,
such as cube widget, color wheel widget, and so on.

Acceleration Layer

The function of the acceleration layer is to accelerate the Ul image drawing process, which is divided into hardware
acceleration and software acceleration. In general, hardware acceleration is significantly better than software acceleration,
but which one to use depends on the hardware environment in which the UI system is deployed. In addition, different
hardware accelerators, also known as graphics processing units (GPU), also have different capabilities. The accelerator
receives the drawing task assigned by the UI widget and transfers the completed image to the display buffer.

7.3. Display Subsystem 159

RTKIOT GUI Documentation, Release v0.0.0.1

Buffer

In most embedded systems where RAM is limited, RealUI uses a chunked rendering mechanism that requires a display
buffer. The display buffer stores the image drawing results of the accelerator and the drawing results of other non-
accelerating widgets, and the data are transferred to the frame buffer through DMA.

Single frame draw mode can be used when the available RAM can accommodate a full frame, in which case a full frame
buffer is used instead of a display buffer.

After configuring the display controller, it will transfer the frame buffer data to the screen, at this time, the screen will
display the Ul interface.

7.4 Software Accelerate

7.4.1 Overall Flow Chart

The flowchart depicts the image resource processing flow accelerated by software. When processing images, different
processing methods are selected based on the compression status and type of image:

* Cover: Write the source image data directly to the corresponding position in the frame buffer. Do not perform any
processing, just overwrite it.

¢ Bypass: Write the source image data directly to the corresponding position in the frame buffer. Bypass mode is
incapable of handling the transparency of images. It applies a global opacity value to the entire image, thereby
affecting the overall transparency. When it comes to creating transparency effects, bypass mode is more space-
efficient compared to source_over mode.

« Filter black: The filtering technique effectively sifts out pixel data with a value of zero from the originating image
data, which essentially means that black pixels are precluded from being inscribed into the frame buffer. This
mechanism induces much swifter refresh dynamics. Pixels of any color other than black undergo the standard
processing method and are duly recorded into the frame buffer.

¢ Source_over: A blending method that combines image color data and frame buffer pixel color data to calculate
the final color based on the opacity_value value Sa, and writes it to the corresponding location in the frame buffer.
The formula is (255 - Sa) * D + Sa * S) / 255), where Sa is the opacity_value of the original image, D is the frame
buffer pixel data, and S is the source image pixel data.

Fig. 4: Software acceleration

» The img_type can be obtained from the head of the image, where the structure of the image head is as follows.

typedef struct gui rgb data head
{
unsigned char scan : 1;
unsigned char align : 1;
unsigned char resize: 2; //0-no resize;1-50%(x&y);2-70%;3-80%
unsigned char compress: 1;
unsigned char rsvd : 3;
char type;
short w;
short h;
char version;
char rsvd2;
} qgui rgb data head t;

7.4. Software Accelerate 160

RTKIOT GUI Documentation, Release v0.0.0.1

e The value of img_type is depicted in the enum below. If the value is IMDC_COMPRESS, it indicates that the
image is compressed and enters the rle processing flow; otherwise, it enters the no rle processing flow.

typedef enum

{

RGB565 =0, //bit[4:0] for Blue, bit[10:5] for Green, bit[15:11] for Red

ARGB8565 =1, //bit[4:0] for Blue, bit[10:5] for Green, bit[15:11] for Red,
—bit[23:16] for Alpha

RGB888 =3, //bit[7:0] for Blue, bit[15:8] for Green, bit[23:16] for Red

ARGB8888 =4, //bit[7:0] for Blue, bit[15:8] for Green, bit[23:16] for Red,
—bit[21:24] for Alpha

BINARY =5,

ALPHAMASK =9,

BMP = 11,

JPEG =12,

PNG = 13,

GIF = 14,

RTKARGB8565 = 15,

} GUI FormatType;

» Execute the corresponding blit process based on different blend_mode.

typedef enum
{
IMG_BYPASS MODE = 0,
IMG_FILTER BLACK,
IMG SRC OVER MODE, //S * Sa + (1 - Sa) * D
IMG_COVER_MODE,
IMG_RECT,
} BLEND MODE TYPE;

¢ When the image is compressed, it is necessary to obtain the compression header from the address of the com-
pressed data. The algorithm_type parameter of this header contains the actual image type. The types of com-
pressed images are described in the imdc_src_type struct, which includes three types: IMDC_SRC_RGB565,
IMDC_SRC_RGB888, and IMDC_SRC_ARGBS8888.

typedef struct imdc_file header
{
struct
{
uint8_ t algorithm: 2;
uint8_t feature 1: 2;
uint8_t feature 2: 2;
uint8_t pixel bytes: 2;
} algorithm type;
uint8 t reserved[3];
uint32_t raw pic width;
uint32_t raw pic height;
} imdc_file header t;

typedef enum
{
IMDC SRC RGB565
IMDC SRC RGB888

= 0x04, // 4,
IMDC SRC_ARGB8888

0
ox44, // 68,
= 0x84, // 132,

} imdc_src_type;

7.4. Software Accelerate 161

RTKIOT GUI Documentation, Release v0.0.0.1

7.4.2 Overview No RLE Cover Mode

The following flow describes the cover mode process for No RLE compressed image. Select a processing method based
on the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 5: Cover Mode Path

« If the matrix is an identity matrix, a blit process without matrix operations is performed; otherwise, a blit process
with matrix operations is carried out.

» The dc_bytes_per_pixel is pixel bytes of display device, calculated as dc->bit_depth >> 3, where bit_depth is the
bit depth of the display device. Taking a display device with a bit depth of 24 as an example, its pixel bytes are 3.

No RLE Cover

The following flowchart describes the process of writing uncompressed images to a frame buffer in cover mode. Taking
the target device image type as RGB565 as an example.

Fig. 6: Cover_blit_2_rgb565

No RLE Cover Matrix

The following flowchart describes the process of writing uncompressed images to a frame buffer using cover mode with
matrix operations. Taking the target device image type as RGB565 as an example.

Fig. 7: Cover_matrix_blit_2_rgb565

7.4.3 Overview No RLE Bypass Mode

The following flow describes the bypass mode process for No RLE compressed image. Select a processing method based
on the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 8: Bypass_mode_path
* If the matrix is an identity matrix, a blit process without matrix operations is performed; otherwise, a blit process
with matrix operations is carried out.

¢ The dc_bytes_per_pixel is pixel bytes of display device, calculated as dc->bit_depth >> 3, where bit_depth is the
bit depth of the display device. Taking a display device with a bit depth of 24 as an example, its pixel bytes are 3.

7.4. Software Accelerate 162

RTKIOT GUI Documentation, Release v0.0.0.1

No RLE Bypass Mode

The following flowchart describes the process of writing uncompressed images to a frame buffer in bypass mode . Taking
the target device image type as RGB565 as an example.

Fig. 9: Bypass_blit_2_rgb565

1. Perform different processing steps based on the img_type.
2. Based on the opacity_value , execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is 0, the image is not displayed and the process is break.
* If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

« If the opacity_value is between 0 and 255 , perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255) . Write the
blended result to the frame buffer.

No RLE Bypass Matrix

The following flowchart describes the process of writing uncompressed images to a frame buffer using blend mode with
matrix operations. Taking the target device image type as RGB565 as an example.

Fig. 10: Bypass_matrix_blit_2_rgb565

1. Perform different processing steps based on the img_type.

2. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.

3. Based on the opacity_value, execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is O, the image is not displayed and the process is break.
« If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

* If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

7.4.4 Overview No RLE Filter

The following flow describes the filter mode process for No RLE compressed image. Select a processing method based
on the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 11: Filter_mode_path

7.4. Software Accelerate 163

RTKIOT GUI Documentation, Release v0.0.0.1

No RLE Filter

The following flowchart describes the process of writing uncompressed images to a frame buffer using filter mode. Taking
the target device image type as RGB565 as an example.

Fig. 12: Filter_blit_2_rgb565

1. Perform different processing steps based on the img_type.
2. If the pixel value is 0O, skip the processing; otherwise, perform the subsequent writing operation.
3. Based on the opacity_value , execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is O, the image is not displayed and the process is break.
« If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

* If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

No RLE Filter Matrix

The following flowchart describes the process of writing uncompressed images to a frame buffer using filter mode with
matrix operations . Taking the target device image type as RGB565 as an example.

Fig. 13: Filter_matrix_blit_2_rgb565

1. Perform different processing steps based on the img_type.

2. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.

3. If the pixel value is 0, skip the processing; otherwise, perform the subsequent writing operation.
4. Based on the opacity_value, execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is O, the image is not displayed and the process is break.
* If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

* If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

7.4.5 Overview No RLE Source_over

The following flow describes the source_over mode process for No RLE compressed image. Select a processing method
based on the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 14: Alpha_mode_path

7.4. Software Accelerate 164

RTKIOT GUI Documentation, Release v0.0.0.1

No RLE Alpha No Matrix

The following flowchart describes the process of writing uncompressed images to a frame buffer using source_over mode.
Taking the target device image type as RGB565 and the source image type as RGB565 as an example.

Fig. 15: Alpha_blit_2_rgb565

Based on the opacity_value , execute the corresponding operation to write image pixels into the framebuffer. - If the
opacity_value is 0, the image is not displayed and the process is break. - If the opacity_value is 255, convert the source
image pixels to RGB565 format and write them to the frame buffer. - If the opacity_value is between 0 and 255, perform
do_blending_acc_2_rgb565_opacity to blend the source image pixels with the corresponding frame buffer pixels. Write
the blended result to the frame buffer.

No RLE Alpha Matrix

The following flowchart describes the process of writing uncompressed images to a frame buffer using source_over mode
with matrix operations. Taking the target device image type as RGB565 and the source image type as RGB565 as an
example.

Fig. 16: Alpha_matrix_blit_2_rgb565
1. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.
2. Based on the opacity_value, execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is O, the image is not displayed and the process is break.
* If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

« If the opacity_value is between 0 and 255, perform do_blending_acc_2_rgb565_opacity to blend the source image
pixels with the corresponding frame buffer pixels. Write the blended result to the frame buffer.

7.4.6 Overview RLE Cover Mode

The following flow describes the cover mode process for RLE compressed image. Select a processing method based on
the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 17: Rle_cover_mode_path

RLE Cover No Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in cover mode. Taking the
target device image type as RGB565 as an example.

Fig. 18: Rle_cover_blit_2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.
2. Decompress the compressed image data.

3. Write the pixel result to the frame buffer.

7.4. Software Accelerate 165

RTKIOT GUI Documentation, Release v0.0.0.1

RLE Cover Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in cover mode with matrix
operations . Taking the target device image type as RGB565 as an example.

Fig. 19: Rle_cover_matrix_blit_2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.
2. Decompress the compressed image data.

3. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.

4. Write the pixel result to the frame buffer.

7.4.7 Overview RLE Bypass Mode

The following flow describes the bypass mode process for RLE compressed image. Select a processing method based on
the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 20: Rle_bypass_mode_path

RLE Bypass No Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in bypass mode . Taking
the target device image type as RGB565 as an example.

Fig. 21: Rle_bypass_blit_2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.
2. Decompress the compressed image data.
3. Based on the opacity_value, execute the corresponding operation to write image pixels into the framebuffer.
» If the opacity_value is O, the image is not displayed and the process is break.
« If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

* If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

RLE Bypass Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in bypass mode with matrix
operations. Taking the target device image type as RGB565 as an example.

Fig. 22: Rle_bypass_matrix_blit 2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.

7.4. Software Accelerate 166

RTKIOT GUI Documentation, Release v0.0.0.1

2. Decompress the compressed image data.

3. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.

4. Based on the opacity_value, execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is O, the image is not displayed and the process is break.
* If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

* If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

7.4.8 Overview RLE Filter

The following flow describes the filter mode process for RLE compressed image. Select a processing method based on
the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 23: Rle_filter_mode_path

RLE Filter

The following flowchart describes the process of writing compressed images to a frame buffer in filter mode. Taking the
target device image type as RGB565 as an example.

Fig. 24: Rle_filter_blit_2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.
2. Decompress the compressed image data.
3. If the pixel value is 0, skip the processing; otherwise, perform the subsequent writing operation.
4. Based on the opacity_value, execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is 0, the image is not displayed and the process is break.
* If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

« If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

RLE Filter Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in filter mode with matrix
operations. Taking the target device image type as RGB565 as an example.

Fig. 25: Rle_filter_matrix_blit_2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.

2. Decompress the compressed image data.

7.4. Software Accelerate 167

RTKIOT GUI Documentation, Release v0.0.0.1

3. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.

4. If the pixel value is 0, skip the processing; otherwise, perform the subsequent writing operation.
5. Based on the opacity_value , execute the corresponding operation to write image pixels into the framebuffer.
* If the opacity_value is O, the image is not displayed and the process is break.
* If the opacity_value is 255, convert the source image pixels to RGB565 format and write them to the frame buffer.

* If the opacity_value is between 0 and 255, perform an alpha blending operation to blend the source image pixels
with the corresponding frame buffer pixels. The blending formula is ((255 - Sa) * D + Sa * S) / 255). Write the
blended result to the frame buffer.

7.4.9 Overview RLE Source_over

The following flow describes the source_over mode process for RLE compressed image. Select a processing method
based on the image matrix and the pixel byte of the display device, and write it to the frame buffer.

Fig. 26: Rle_alpha_blit_2_rgb565

RLE Source_over No Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in source_over mode.
Taking the target device image type as RGB565 as an example.

1. Perform different processing steps based on the img_type from the head of compression data.

2. Decompress the compressed image data.

3. Based on the opacity_value , execute the corresponding operation to write image pixels into the framebufter.
* If the opacity_value is 0, the image is not displayed and the process is break.

e If the opacity_value is 255: When the source image is in RGB565 format, directly write it to the frame buffer.
Otherwise, perform the corresponding do blend operation and write the blend result to the frame buffer.

* If the opacity_value is between 0 and 255, perform the appropriate do_blending operation to blend the source
image pixels with the corresponding frame buffer pixels. Write the blended result to the frame buffer.

RLE Source_over Matrix

The following flowchart describes the process of writing compressed images to a frame buffer in source_over mode with
matrix operations . Taking the target device image type as RGB565 as an example.

Fig. 27: Rle_alpha_matrix_blit_2_rgb565

1. Perform different processing steps based on the img_type from the head of compression data.
2. Decompress the compressed image data.

3. Perform matrix calculation to map the target area write-in points to image pixels, and obtain the pixel value of the
image pixels.

7.4. Software Accelerate 168

RTKIOT GUI Documentation, Release v0.0.0.1

4. Based on the opacity_value , execute the corresponding operation to write image pixels into the framebuffer.

* If the opacity_value is 0, the image is not displayed and the process is break.

* If the opacity value level is 255: When the source image is in RGB565 format, directly write it to the frame buffer.

Otherwise, perform the corresponding do blend operation and write the blend result to the frame buffer.

* If the opacity_value is between 0 and 255, perform the appropriate do_blending operation to blend the source

image pixels with the corresponding frame buffer pixels. Write the blended result to the frame buffer.

Note: In compressed source_over matrix mode output rle_rgb888 and rle_rgba8888 equivalent to output as rle_rgb565.

7.4.10 Support Input Type and Output Type

Input type Output type
RGB565 RGB565
RGB888 RGBS888
ARGB8888 RLE_ARGBS8888
ARGB8565 ARGB8565
RLE_RGB565 RLE_RGB565
RLE_RGB888 RLE_RGBS888

RLE_ARGB8888
RLE_ARGB8565

RLE_ARGBS8888
RLE_ARGB8565

7.4. Software Accelerate

169

CHAPTER
EIGHT

FAQ

Some common problems that arise during the use of GUI can be referred to in this chapter.

8.1 Development Environment

8.1.1 Simulator in VSCode

If you encounter problems the first time you run the simulator in VSCode, please check the following configurations in
your development environment:

Installing the Appropriate Version of the Toolchain

Simulator in VSCode using MinGW toolchain (refer to Install compiler in Get Started), and MinGW version 8.1.0 is
recommended, which can be accessed from MinGW v8.1.0 Download. There is no guarantee that all later versions of
the MinGW will function properly.

Warning: VSCode currently does not support gdb version higher than v9.2.0 in MinGW. (gdb v8.1 is used in
MinGW v8.1.0, which is recommended.)

Adding Toolchain to System Environment Variables

Make sure C: /mingw64/bin is already added to system environment variable Path.

8.2 Porting

8.2.1 User Data

User Data bin image generation need to consider user data address in flash_map. h. Normally the address in generate
script is consistent with user data address in flash _map. h, and if user data bin need to add image data header due to
mppgtool requirement, the generate script address must increase by image data header size.

170

https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/sjlj/x86_64-8.1.0-release-posix-sjlj-rt_v6-rev0.7z

RTKIOT GUI Documentation, Release v0.0.0.1

8.2.2 JS Malloc Heap

JS (javascript) is included in GUI module, the heap space JS used may fail to malloc due to resource limitation, so this
heap space could relocate on psram if SoC supports psram feature. The specific information can be found in the API
void *context alloc(size t size, void *cb data p).

8.2.3 Feed Watch Dog

GUI task does not support feeding the watch dog, so the app should do this in a hook function registered by
the APP and used by GUI. The registered function is void gui task ext execution sethook(void
(*hook) (void)).

8.2.4 Not Support FPU

If SoC does not support FPU, some headers and code should be excluded by macros, for example, RTL8763EP.

8.2.5 File System

SoC needs to read image and font resources from flash by file system which should set a start address that is consistent
with the address in User Data generation script. GUI has supplied the related file which is romfs. c where the start
address is ROMFS_ADDR.

8.2.6 Flash Setting

Flash speed mode should be set to 4 bit mode; flash clock should be set to a higher value based on chip capabilities.

8.2.7 CPU Frequence

CPU frequency should be set to a higher value based on chip capabilities.

8.2.8 SCONS Version

A specific scons version is required, please use the pip install scons==4.4.0 command to download.

8.2. Porting 171

RTKIOT GUI Documentation, Release v0.0.0.1

8.3 Specification

8.3.1 Graphics

Platform RTL8762D RTL8772F RTL87X2G RTL8763E PC
RGB565 Y Y Y Y Y
RGBS8S88 N Y Y N Y
ARGB8888 N Y Y N Y
SVG N Y N N Y
TTF N Y N N Y
DOT font Y Y Y Y Y
Vector Graphics N Y N N Y
Linear gradient N Y N N Y
Radial gradient N N N N Y
8.3.2 Memory Usage
RTL8772F Demo
The memory consumption statistics of this demo are as follows.
Module Cost
Widget 14.56KB
Framebuffer screenWidth * pixelBytes * Lines
Thread stack 10KB

Widget Memory Usage

Widget Memory(Byte) on ARM SoC Memory(Byte) on Win_32 SIM
obj 52 88
img 112 178
win 72 112
page 124 184
tab 88 136
tabview 100 160
button 88 160
text 100 176
scroll_text 120 200
app 92 152
canvas_arc 156 264
canvas_rect 64 104
canvas 60 104
card 72 112
cardview 124 176
colorwheel 72 112

continues on next page

8.3. Specification

172

RTKIOT GUI Documentation, Release v0.0.0.1

Table 1 - continued from previous page

Widget Memory(Byte) on ARM SoC Memory(Byte) on Win_32 SIM
cube 748 928
curtain 60 96
curtainview 120 168
gallery 112 184
grid 100 144
img_live 84 144
img_scope 124 192
stb_img 76 144
kb 108 192
map 196 272
menu_cellular 76 120
multi_level 60 104
pagelist 96 160
pagelistview 64 112
perspective 736 920
progressbar 80 136
gbcode 84 136
scroll_wheel 388 696
seekbar 128 216
simple_img 68 120
svg 96 144
turn_table 128 192
watch_gradient_spot 60 96
wave 72 112
wheel_list 64 112

8.4 How To Increase FPS

8.4.1 Pixel format

Using RGBA/RGB images can get great display effects, but if the FPS is low, then you can use RGB565 format image
resources, sacrifice a little effect to get a FPS boost.

8.4. How To Increase FPS 173

RTKIOT GUI Documentation, Release v0.0.0.1

8.4.2 Hardware Acceleration

Use hardware acceleration to render images instead of software acceleration whenever possible. Different chip models
may have different GPU, please refer to the guidance document in the SDK for details.

8.4.3 Data Transmission Speed
HoneyGUI supports image compression, and some chips have built-in hardware decompression modules. Using hardware
decompression modules is very fast, but software decompression requires a certain amount of time. Compressed images

can reduce the size of the original image resources, allowing more resources to be stored in user data, and will also reduce
the time needed to read from flash.

8.4.4 Ul Design

Reducing complexity in the U, as well as the number and size of images in a single interface, can increase the frame rate.
Make sure that every pixel of the image data that needs to be loaded is useful.

8.4.5 Image Compression

Almost all image compression reduces the refresh rate of the Ul so avoid using compressed images if the memory size
is sufficient.

8.4.6 Font

Custom Binary Files

» Use multiples of 8 for font size whenever possible.

* When the file contains several hundred characters, indexMethod should be set to O when creating the font file.

Standard TTF Files

 Using TTF files to display text is significantly slower than using BIN.

» TTF files can be clipped through an open source solution.

8.5 Display

8.5.1 Font Anti-Aliasing

* Poor font anti-aliasing and abnormal colored edges on white text.

When using font libraries with 2 bits or more, if the font anti-aliasing effect is poor and there are abnormal colors on the
edges of the font or the font color is displayed incorrectly, it may be an issue with the endianness of the font rendering data.
To diagnose this, try displaying the font in RGB single-channel colors. For example, set the font colortogui rgb (255,
0,0,255). Normally, the text should appear red. If the text appears blue, there is an abnormality (this can also be
identified with any colored text).

8.5. Display 174

CHAPTER
NINE

GET PDF

PDF version: RTKIOT GUI.pdf

175

CHAPTER
TEN

API

Application Programming Interface

APP
Application

BG
Background

DMA
Direct Memory Access

FB
Frame Buffer

GPIO
General Purpose Input Output

GPU
Graphics Processing Unit

GUI
Graphical User Interface

12C
Inter-Integrated Circuit

IC
Integrated Circuit

KB
Key Board

LCD

Liquid Crystal Display
0S

Operating System

PC
Personal Computer

PSRAM

Pseudo Static Random Access Memory

RAM
Random Access Memory

GLOSSARY

176

RTKIOT GUI Documentation, Release v0.0.0.1

RLE
Run-Length Encoding

RVD
RTKIOT Visual Designer

TP
Touch Pad

177

CHAPTER
ELEVEN

RELEASE NOTES

11.1 Major Changes

11.1.1 v1.0.6.6

¢ Major Features
— Add view widget. (21a61e0d)
— Add 3d face. (d2862e5¢)
— Add littlefs packing tool. (7bd59f3d)
¢ Major Bug Fixes
— Fix roller loop off. (6045a92d)
— Fix Iv_rle, add fs load for rle, fix cache. (821b890e¢)

11.2 Change Logs

11.2.1 v1.0.6.6

* Added
— Add view widget. (21a61e0d)
— Add 3d face. (d2862e5¢)
— Add littlefs packing tool. (7bd59f3d)
¢ Changed
— Modify LVGL watch demo. (92ed6cd8, e7cf2529, 93be85a9, 09f7cec0)
— Modify LVGL doc. (ebale59b)
* Fixed
— Fix roller loop off. (6045a92d)
— Fix Iv_rle, add fs load for rle, fix cache. (821b890e¢)

178

A

API, 176
APP, 176

B

BG, 176

D
DMA, 176

E
EVENT_NUM_MAX (C macro), 112

F

FB, 176

FONT _FILE BMP_FLAG (C macro), 125

FONT_FREE_PSRAM (C macro), 125

FONT_MALLOC PSRAM (C macro), 125

FONT SRC_MODE (C++ enum), 94

FONT SRC MODE: :FONT SRC FILESYS
enumerator), 94

FONT_SRC _MODE: :FONT_SRC FTL (C++ enumera-
tor), 94

(C++

FONT SRC MODE: :FONT SRC MEMADDR (C++
enumerator), 94

FONT _SRC_TYPE (C++ enum), 93

FONT _SRC TYPE::GUI FONT SRC_BMP (C++

enumerator), 93
FONT _SRC TYPE::GUI FONT SRC FT (C++ enu-

merator), 94

FONT _SRC TYPE::GUI FONT SRC_IMG (C++
enumerator), 94

FONT SRC TYPE::GUI FONT SRC MAT (C++
enumerator), 94

FONT SRC TYPE::GUI FONT SRC STB (C++
enumerator), 93

FONT _SRC TYPE::GUI FONT SRC TTF (C++

enumerator), 94

G

generate emoji file path from unicode
(C++ function), 130

INDEX

get fontlib by name (C++ function), 127

get fontlib by size (C++ function), 127

get len by char num (C++ function), 130

GPIO, 176

GPU, 176

GUI, 176

gui 3d base t (C++ struct), 110

gui 3d base t::base (C++ member), 110

gui 3d base t::desc (C++ member), 110

gui 3d create (C++ function), 109

gui 3d on_click (C++ function), 110

gui 3d set global shape transform cb
(C++ function), 109

gui 3d set local shape transform cb
(C++ function), 110

gui 3d shape transform_cb (C++ nype), 109

GUI CHAR HEAD (C++ struct), 127

GUI CHAR HEAD: :baseline (C++ member), 127

GUI CHAR HEAD::char_h (C++ member), 127

GUI CHAR HEAD::char_ w (C++ member), 127

GUI CHAR HEAD::char_y (C++ member), 127

gui dom create tree nest (C++ function), 75

gui dom get preview image file (C++ func-
tion), 76

gui font get dot info (C++ function), 127

GUI_FONT_HEAD_ BMP (C++ struct), 128

GUI FONT HEAD BMP: :bold (C++ member), 129

GUI FONT HEAD BMP: :crop (C++ member), 129

GUI _FONT HEAD BMP::file type (C++ mem-
ber), 129

GUI FONT HEAD BMP::font name (C++ mem-
ber), 129

GUI FONT HEAD BMP::font name length
(C++ member), 129

GUI_FONT HEAD BMP::font size (C++ mem-
ber), 129

GUI FONT HEAD BMP::head length (C++ mem-
ber), 129

GUI FONT HEAD BMP::index area size (C++
member), 129

GUI FONT HEAD BMP::index method
member), 129

(C++

179

RTKIOT GUI Documentation, Release v0.0.0.1

GUI FONT HEAD BMP:
129

GUI FONT HEAD BMP:
ber), 129

GUI FONT HEAD BMP:

GUI FONT HEAD BMP:
ber), 129

GUI FONT HEAD BMP:
129

gui font _mem destroy (C++ function), 126

gui font mem draw (C++ function), 126

gui font mem init (C++ function), 125

gui font mem init fs (C++ function), 125

gui font mem _init ftl (C++ function), 125

gui font mem init mem (C++ function), 125

gui font mem layout (C++ function), 127

gui font mem load (C++ function), 126

gui font mem obj destroy (C++ function), 126

gui font mem unload (C++ function), 126

gui get mem char width (C++ function), 126

gui get mem utf8 char_width (C++ function),
126

gui get obj count (C++ function), 75

gui get root (C++ function), 74

gui img create from_fs (C++ function), 83

gui img create from_ ftl (C++ function), 82

gui img create from_mem (C++ function), 82

gui img get height (C++ function), 80

gui img get image data (C++ function), 85

gui img get transform_c_ X (C++ function), 84

gui img get transform_c_y (C++ function), 84

gui img get transform degrees (C++ func-
tion), 84

gui img get transform scale Xx (C++ func-
tion), 84

gui img get transform scale y (C++ func-
tion), 84

gui img get transform t X (C++ function), 84

gui img get transform t y (C++ function), 84

gui_img get width (C++ function), 80

gui_img refresh size (C++ function), 80

gui img rotation (C++ function), 81

gui img scale (C++ function), 81

gui img set animate (C++ function), 83

gui _img set attribute (C++ function), 81

gui img set image data (C++ function), 85

gui img set location (C++ function), 80

gui img set mode (C++ function), 81

gui img set opacity (C++ function), 82

gui _img set quality (C++ function), 83

gui_img skew X (C++ function), 82

gui img skew y (C++ function), 82

gui_img t (C++ struct), 86

gui img t::animate (C++ member), 86

iitalic (C++ member),
:rendor_mode (C++ mem-

:rsvd (C++ member), 129
:scan_mode (C++ mem-

:version (C++ member),

gui img t::animate array length
member), 87

gui img t::base (C++ member), 86

gui img t::blend mode (C++ member), 86

gui img t::checksum (C++ member), 87

gui img t::data (C++ member), 86

gui img t::draw_img (C++ member), 86

gui img t::filename (C++ member), 86

gui_img t::ftl (C++ member), 86

gui img t::high quality (C++ member), 86

gui img t::need clip (C++ member), 87

gui img t::opacity value (C++ member), 86

gui img t::press_ flag (C++ member), 86

gui img t::release flag (C++ member), 87

gui img t::src_mode (C++ member), 86

gui img t::transform (C++ member), 86

gui img transform t (C++ struct), 85

gui img transform t::c_ X (C++ member), 85

gui_img transform_t::c_y (C++ member), 85

gui img transform_t::degrees (C++ mem-

(C++

ber), 85

gui img transform t::scale X (C++ mem-
ber), 85

gui img transform_t::scale y (C++ mem-
ber), 85

gui img transform_t::t X (C++ member), 86

gui img transform t::t x old (C++ mem-
ber), 86

gui img transform t::t y (C++ member), 86

gui img transform t::t y old (C++ mem-
ber), 86

gui img translate (C++ function), 81

gui img tree convert to img (C++ function),
83

gui_inertial (C++ function), 75

gui obj absolute xy (C++ function), 74

gui obj_ checksum (C++ function), 74

gui obj create (C++ function), 72

gui obj create timer (C++ function), 76

gui obj delete timer (C++ function), 76

gui obj enable this parent short
function), 73

gui obj get area (C++ function), 73

gui obj get clip rect (C++ function), 72

gui obj get fake root (C++ function), 72

gui obj get root (C++ function), 72

gui obj hidden (C++ function), 74

gui obj in rect (C++ function), 73

gui obj move (C++ function), 76

gui obj out screen (C++ function), 72

gui obj point in obj circle (C++ function),
74

gui obj point_in obj rect (C++ function), 73

gui obj show (C++ function), 72

(C++

Index

180

RTKIOT GUI Documentation, Release v0.0.0.1

gui obj start timer (C++ function), 77

gui obj stop timer (C++ function), 77

gui set location (C++ function), 75

gui_ text click (C++ function), 94

gui text content set (C++ function), 98

gui text convert to img (C++ function), 98

gui_text create (C++ function), 98

gui text emoji set (C++ function), 97

gui_ text encoding set (C++ function), 97

gui text font mode set (C++ function), 96

gui text input set (C++ function), 95

gui text line t (C++ struct), 100

gui text line t::line_char (C++ member),
100

gui text line t::line_dx (C++ member), 100

gui text mode set (C++ function), 95

gui text move (C++ function), 96

gui_text pswd done (C++ function), 94

gui_ text rect t (C++ struct), 130

gui text rect t::x1(C++ member), 131

gui text rect t::x2 (C++ member), 131

gui text rect t::xboundleft (C++ member),

131
gui_ text rect t::xboundright (C++ mem-
ber), 131

gui text rect t::yl (C++ member), 131

gui text rect t::y2(C++ member), 131

gui text rect t::yboundbottom (C++ mem-
ber), 131

gui text rect t::yboundtop (C++ member),
131

gui text rendermode set (C++ function), 96

gui text set (C++ function), 94

gui_text set animate (C++ function), 95

gui_text set matrix (C++ function), 97

gui text set min_scale (C++ function), 96

gui text size set (C++ function), 96

gui text t (C++ smruct), 98

gui text t::active font len (C++ member),
99

gui_text t::animate (C++ member), 98

gui text t::base (C++ member), 98

gui text t::char_height sum (C++ member),
99

gui_text t::char_line_sum (C++ member), 99

gui_text t::char width _sum (C++ member),
99

gui text t::charset (C++ member), 99

gui text t::checksum (C++ member), 99

gui_text t::color (C++ member), 98

gui_text t::content (C++ member), 99

gui text t::content_refresh (C++ member),
100

gui text t::data (C++ member), 99

gui text t::emoji path (C++ member), 99

gui text t::emoji_size (C++ member), 99

gui_ text t::font height (C++ member), 99

gui text t::font_len (C++ member), 99

gui text t::font mode (C++ member), 99

gui text t::font type (C++ member), 99

gui text t::inputable (C++ member), 100

gui text t::ispasswd (C++ member), 100

gui text t::layout refresh (C++ member),
100

gui text t::len (C++ member), 99

gui text t::matrix (C++ member), 99

gui text t::min_scale (C++ member), 99

gui text t::mode (C++ member), 99

gui text t::offset X (C++ member), 99

gui text t::offset y (C++ member), 99

gui text t::path (C++ member), 99

gui text t::rendermode (C++ member), 100

gui text t::scale_img (C++ member), 98

gui_ text t::scope (C++ member), 100

gui text t::use img blit (C++ member), 100

gui text t::wordwrap (C++ member), 100

gui_text type set (C++ function), 96

gui_ text use matrix by img (C++ function),
95

gui text wordwrap set (C++ function), 95

gui update speed (C++ function), 75

gui update speed by displacement
function), 76

gui view create (C++ function), 113

gui view descriptor get (C++ function), 113

gui view descriptor register (C++ func-
tion), 113

gui view descriptor t (C++ struct), 116

gui view descriptor t::keep (C++ member),
116

gui view descriptor_t::name (C++ member),
116

gui view descriptor t::on switch in
(C++ member), 116

gui view descriptor_t::on switch out
(C++ member), 116

gui view descriptor t::pView (C++ mem-
ber), 116

gui view get current view (C++ function),
114

gui view id t (C++ strucr), 114

gui view id t::X (C++ member), 115

gui view id t::y (C++ member), 115

gui_view on_event t (C++ struct), 116

gui view on event t::descriptor
member), 116

gui view on_event t::event (C++ member),
116

(C++

(C++

Index

181

RTKIOT GUI Documentation, Release v0.0.0.1

gui view on event t::switch in style
(C++ member), 116

gui view on _event t::switch out style
(C++ member), 116

gui view switch direct (C++ function), 114

gui view switch on event (C++ function), 114

gui view t (C++ struct), 115

gui view t::animate (C++ member), 115

gui view t::base (C++ member), 115

gui view t::checksum (C++ member), 116

gui view t::cur id (C++ member), 115

gui view t::descriptor (C++ member), 115

gui view t::event (C++ member), 115

gui view t::moveback (C++ member), 115

gui view t::on_event (C++ member), 116

gui view t::on_event num(C++ member), 116

gui view t::release X (C++ member), 115

gui view t::release y (C++ member), 115

gui view t::style (C++ member), 115

gui view t::view button (C++ member), 116

gui view t::view button long (C++ mem-
ber), 116

gui view t::view click (C++ member), 115

gui view t::view down (C++ member), 115

gui view t::view left (C++ member), 115

gui view t::view right (C++ member), 115

gui view t::view switch ready (C++ mem-

ber), 115
gui view t::view touch_long (C++ member),
115

gui view t::view tp (C++ member), 115
gui view t::view up (C++ member), 115
gui widget name (C++ function), 75

I2C, 176
IC, 176

K
KB, 176

L
LCD, 176

M

mem_char t (C++ struct), 127
mem_char_t::buf (C++ member), 128
mem_char_t::char_h (C++ member), 128
mem_char_t::char_w (C++ member), 128
mem_char _t::char_y (C++ member), 128
mem char t::dot addr (C++ member), 128
mem_char_t::emoji_img (C++ member), 128
mem_char_t::h (C++ member), 128
mem_char_t::unicode (C++ member), 128

mem _char t::w (C++ member), 128

mem_char_ t::X (C++ member), 128
mem_char_t::y (C++ member), 128

MEM FONT LIB (C++ struct), 128

MEM_FONT LIB::data (C++ member), 128

MEM FONT LIB::font file (C++ member), 128
MEM FONT LIB::font size (C++ member), 128
MEM FONT LIB::type (C++ member), 128

O

0S, 176

P

PC, 176

process content by charset (C++ function),
130

PSRAM, 176

R

RAM, 176
RLE, 177
RVD, 177

T

TEXT_CHARSET (C++ enum), 129

TEXT_CHARSET: :UNICODE_ENCODING (C++ enu-
merator), 130

TEXT _CHARSET: :UTF_16 (C++ enumerator), 129

TEXT _CHARSET: :UTF_16BE (C++ enumerator), 130

TEXT _CHARSET: :UTF_16LE (C++ enumerator), 129

TEXT CHARSET: :UTF_32BE (C++ enumerator), 130

TEXT _CHARSET: :UTF_32LE (C++ enumerator), 130

TEXT _CHARSET: :UTF_8 (C++ enumerator), 129

TEXT_MODE (C++ enum), 93

TEXT _MODE: : CENTER (C++ enumerator), 93

TEXT _MODE: : LEFT (C++ enumerator), 93

TEXT_MODE: :MID CENTER (C++ enumerator), 93

TEXT _MODE: :MID LEFT (C++ enumerator), 93

TEXT _MODE: :MID RIGHT (C++ enumerator), 93

TEXT MODE: :MULTI CENTER (C++ enumerator), 93

TEXT _MODE: :MULTI LEFT (C++ enumerator), 93

TEXT_MODE: :MULTI RIGHT (C++ enumerator), 93

TEXT _MODE: :RIGHT (C++ enumerator), 93

TEXT _MODE: : SCROLL X (C++ enumerator), 93

TEXT _MODE: :SCROLL X REVERSE (C++ enumera-
tor), 93

TEXT _MODE: : SCROLL Y (C++ enumerator), 93

TEXT_MODE: :SCROLL_Y REVERSE (C++ enumera-
tor), 93

TEXT MODE: :VERTICAL LEFT (C++ enumerator),
93

TEXT_MODE: :VERTICAL RIGHT (C++ enumerator),
93

TP, 177

Index

182

RTKIOT GUI Documentation, Release v0.0.0.1

Vv

VIEW
VIEW SWITCH STYLE::VIEW ANIMATION 1

VIEW SWITCH STYLE::VIEW ANIMATION 2
VIEW SWITCH STYLE::VIEW ANIMATION 3
VIEW SWITCH STYLE::VIEW ANIMATION 4
VIEW SWITCH STYLE::VIEW ANIMATION 5
VIEW SWITCH STYLE::VIEW ANIMATION 6
VIEW SWITCH STYLE::VIEW ANIMATION 7
VIEW SWITCH STYLE::VIEW ANIMATION 8
VIEW SWITCH STYLE::VIEW ANIMATION NULL
VIEW SWITCH STYLE::VIEW CUBE (C++ enumer-
VIEW SWITCH STYLE::VIEW REDUCTION (C++
VIEW SWITCH STYLE::VIEW ROTATE (C++ enu-
VIEW SWITCH STYLE::VIEW STILL (C++ enu-

VIEW SWITCH STYLE::VIEW TRANSPLATION

SWITCH STYLE (C++ enum), 112
(C++ enumerator), 112
(C++ enumerator), 113
(C++ enumerator), 113
(C++ enumerator), 113
(C++ enumerator), 113
(C++ enumerator), 113
(C++ enumerator), 113
(C++ enumerator), 113
(C++ enumerator), 112
ator), 112
enumerator), 112
merator), 112
merator), 112

(C++ enumerator), 112

Index

183

	Get Started
	Source Project Download
	Description
	Software Architecture
	Installation For Windows
	Install Compiler
	Install Python
	Install Scons
	Startup by CMD (Scons)
	Startup by CMD (CMake)
	Startup by VSCode
	Install VSCode
	Open Project
	Run Project

	Display
	Watch Project
	Dashboard Project

	GUI Application
	C-APP Application
	Define A C-APP
	Create The Widget Tree of A C-APP
	C-APP Operations
	C-APP Transition Animation
	Example

	API

	Use LVGL Design An Application
	LVGL introduction
	HoneyGUI Simulator
	Run LVGL in HoneyGUI Simulator
	HoneyGUI LVGL

	Porting
	Display
	Input Device
	File System
	ROMFS File System Image
	LittleFS File System Image

	LVGL Benchmark
	Benchmark for Reference

	Start with Demo
	Resource Converter
	Image Converter
	LVGL Image Converter
	HoneyGUI Image Convert Tool
	Compressing Images
	Importing into LVGL
	Enabling RLE Decoder in LVGL

	Font Converter

	Development Resources
	Online Doucument
	Github Repo
	Designer
	Forum
	Blog

	FAQ
	HoneyGUI vs LVGL Picture Drawing Frame Rate
	GRAM Screen (280x456) RAM Block Drawing
	PSRAM Full Frame Buffer Drawing (800x480)
	Analysis

	HoneyGUI vs LVGL RAM Consumption
	Conclusion

	Use ARM-2D Design An Application
	ARM-2D Introduction

	Use RVD Tool Design An Application
	Overview
	Function Panels
	Toolkit/Widgets
	Non-containerized Widget
	Text
	Button
	Image
	SeekBar
	Image SeekBar
	Switch
	Arc

	Container Widget
	Screen
	TabView and Tab
	Page
	Win

	Design View/Canvas
	TabView - Create/Delete/Insert Tab
	Create Tab
	Delete Tab
	Insert Tab

	TabView Overview Window
	Zoom of Design View

	Property View
	Widget Tree

	Resource Management
	Font Resource Management
	Image Resource Management
	Add Images
	Remove Images/Image Folder
	Rename Image Folder

	Preview Images
	Refresh

	Font Resource Management
	Add Third-Party Font
	Remove Third-Party Font

	Menu Bar
	File
	Start Page
	Save
	Exit Save

	Edit
	Copy/Paste
	Delete
	Undo/Redo
	Convert Project
	Project Name Modification

	Setting
	Image Convert Setting
	Scan Mode
	Color Space
	Compress

	Font Convert Setting
	Export
	Simulate

	Quick Start to Tutorials
	How to Create Project
	How to Write Javascript Code
	How to Open Project
	How to Open/Close Project
	How to Export/Pack Project
	How to Simulate

	GUI Demo Project
	JavaScript Syntax
	Win
	Hide A Window
	Listen to Gestures
	Swap Windows
	API

	Button
	Monitor Button Press Event
	API

	Text
	Change Text Content
	API

	Seekbar
	Display Current Progress
	A Seekbar Animation That Increases From 0 to 100%
	API

	Switch
	Listen to 2 Gestures
	Turn on A Led (P1_1)
	API

	Image
	API

	App
	API

	Progressbar
	API

	Tab
	API

	XML Syntax
	Element
	Nesting
	Specifications
	Example

	Win
	Img

	Middleware
	Package
	Launcher
	XML
	JavaScript
	Example
	Progressbar API
	Define A Progressbar Object
	Add 2 Functions to The Progressbar Object
	Define 2 Functions
	Light Control
	Light Switch Data
	GPIO Light Switch
	MATTER Light Switch
	MESH Light Switch

	Widgets
	Obj
	Usage
	API

	Img
	Usage
	Create Widget
	Update Location
	Set Attribute
	Get Height/Width
	Refresh
	Blend Mode
	Translation
	Rotation
	Zoom
	Opacity
	Animation
	Quality
	Screenshot

	Example
	API

	Text
	Features
	Usage
	Initialize the Font File
	Create Text Widget
	Set Text Attributes
	Set Text
	Font Type
	Text Content
	Text Encoding
	Convert to Img
	Text Input
	Text Click
	Text Mode
	Text Move
	Set Animate

	Example
	Multiple Text Widget
	Animate Text Widget

	API

	3D Model
	GUI Load 3D Model
	3D Widget Usage
	Create Widget
	Global Shape Transformation
	Local Shape Transformation
	World Transformation
	Camera Transformation
	Lighting Information

	Set Animation

	Example
	3D Butterfly
	3D Prism
	3D Face

	API

	View
	Usage
	Register Descriptor of View
	Get Descriptor of View by Name
	Create View Widget
	Set Switch View Event
	Switch View Directly
	Get Current View Pointer

	Example
	View

	API

	Porting
	Platform Porting
	Acceleration
	Display Device
	Interface
	Driver IC

	Filesystem
	Flash Translation Layer
	Input Device
	Touch IC

	Operating System
	Sleep Management

	Font Porting
	Dot Matrix Font Library Porting
	Glyph Loading
	Text Encoding Conversion
	Font Library Indexing

	Layout
	Character Rendering

	API

	HoneyGUI Porting
	Important Notes
	Build Requirements
	Armcc Compilation
	Armclang Compilation
	Project Porting Example

	Samples
	Calculator
	Source File
	Two Steps
	1. Declare the app structure
	2. Declare the app ui design function

	86Box
	Source File
	UI Design
	RVisualDesigner

	Javascript
	Gestures
	Light Control Switch
	Tab Jumping Switch

	LiteGFX
	QuDai Introduction
	Source Code
	Widget Adaptation Layer
	Platform Adaptation Layer
	Core Lib

	Status Bar
	Implementation
	File
	Design

	Fruit Ninja
	Requirements
	Source File
	Configurations
	Usage Steps
	Step 1: Declare the app ui design function
	Step 2: Call function

	Design Ideas

	Music Player
	Implementation
	Code
	Widgets Tree Design

	Timer
	Implementation
	Code
	Widgets Tree Design

	Watchface Market
	Implementation
	Code
	Widgets Tree Design

	Tool
	Image Convert Tool
	Image Format Conversion
	Configuration
	Color Space

	Output Files

	Font Convert Tool
	Font Bin Generation
	FontConfig.json Parameter Description
	Setting.ini Parameter Description

	Pack Tool
	RTL87x2G and RTL8762D
	RTL8763E and RTL8773DO
	RTL8773E
	Generate Root Bin
	Adding Header Information

	MP Tool
	Download to the EVB

	Design Spec
	RealUI System
	RealUI Workflow
	System
	GUI Server
	GUI Application
	GUI Server Task

	Input Subsystem
	Touchpad
	Touchpad Hardware and Driver
	Get Touchpad Data
	Touchpad Algorithm Processor
	Widget Response

	Keyboard
	Hardware and Driver
	Get Keyboard Data
	Keyboard Algorithm Processor
	Response

	Display Subsystem
	Display Workflow
	Flash File System
	UI Widget
	Acceleration Layer
	Buffer

	Software Accelerate
	Overall Flow Chart
	Overview No RLE Cover Mode
	No RLE Cover
	No RLE Cover Matrix

	Overview No RLE Bypass Mode
	No RLE Bypass Mode
	No RLE Bypass Matrix

	Overview No RLE Filter
	No RLE Filter
	No RLE Filter Matrix

	Overview No RLE Source_over
	No RLE Alpha No Matrix
	No RLE Alpha Matrix

	Overview RLE Cover Mode
	RLE Cover No Matrix
	RLE Cover Matrix

	Overview RLE Bypass Mode
	RLE Bypass No Matrix
	RLE Bypass Matrix

	Overview RLE Filter
	RLE Filter
	RLE Filter Matrix

	Overview RLE Source_over
	RLE Source_over No Matrix
	RLE Source_over Matrix

	Support Input Type and Output Type

	FAQ
	Development Environment
	Simulator in VSCode
	Installing the Appropriate Version of the Toolchain
	Adding Toolchain to System Environment Variables

	Porting
	User Data
	JS Malloc Heap
	Feed Watch Dog
	Not Support FPU
	File System
	Flash Setting
	CPU Frequence
	SCONS Version

	Specification
	Graphics
	Memory Usage
	RTL8772F Demo
	Widget Memory Usage

	How To Increase FPS
	Pixel format
	Hardware Acceleration
	Data Transmission Speed
	UI Design
	Image Compression
	Font
	Custom Binary Files
	Standard TTF Files

	Display
	Font Anti-Aliasing

	Get PDF
	Glossary
	Release Notes
	Major Changes
	v1.0.6.6

	Change Logs
	v1.0.6.6

	Index

