One Shot Mode - Interrupt Mode
This example uses the ADC one shot mode for voltage detection.
This example detects the input voltage of P2_7 through an interrupt. When the ADC sampling is completed, an interrupt is triggered, and the ADC sample data raw data is read in the interrupt function and voltage conversion calculations are performed.
In this example, the ADC voltage sampling range can be selected by configuring the macro ADC_MODE_DIVIDE_OR_BYPASS
.
In this example, the Hardware Average function can be enabled by configuring the macro ADC_DATA_HW_AVERAGE
.
In this example, whether the ADC sample data is stored in the FIFO can be selected by configuring the macro ADC_DATA_OUTPUT_TO_FIFO
.
Requirements
The sample supports the following development kits:
Hardware Platforms |
Board Name |
---|---|
RTL8752H HDK |
RTL8752H EVB |
For more requirements, please refer to Quick Start.
Wiring
Connect P2_7 to the external voltage input.
Configurations
The macros that can be configured in this example are as follows:
ADC_MODE_DIVIDE_OR_BYPASS
: Configures the ADC voltage sampling range, with the following selectable values.ADC_DIVIDE_MODE
: In Divide Mode, the ADC samples voltage values ranging from 0 to 3.3V.ADC_BYPASS_MODE
: In Bypass Mode, the ADC samples voltage values ranging from 0 to 0.9V.
ADC_DATA_HW_AVERAGE
:Configures the ADC Hardware Average function.ADC_DATA_OUTPUT_TO_FIFO
:Configures the sampled data of the ADC to be stored in the ADC FIFO.
Note
The Hardware Average function is only applicable to channel 0 of the ADC. The Hardware Average function and the Data Output to FIFO function cannot be enabled simultaneously.
Building and Downloading
This sample can be found in the SDK folder:
Project file: board\evb\io_sample\ADC\OneShotMode\mdk
Project file: board\evb\io_sample\ADC\OneShotMode\gcc
Please follow these steps to build and run the example:
Open sample project file.
To build the target, follow the steps listed on the Generating App Image in Quick Start.
After a successful compilation, the app bin
app_MP_xxx.bin
will be generated in the directorymdk\bin
orgcc\bin
.To download app bin into EVB board, follow the steps listed on the MP Tool Download in Quick Start.
Press reset button on EVB board and it will start running.
Experimental Verification
ADC Configurations:
If the ADC is configured as
ADC_DIVIDE_MODE
, print the following log.[ADC]ADC sample mode is divide mode !
If the ADC is configured as
ADC_BYPASS_MODE
, print the following log.[ADC]ADC sample mode is bypass mode !
After the ADC sampling is finished, the raw data acquired and the converted voltage values are printed within the Debug Analyzer.
[io_adc] io_adc_voltage_calculate: ADC rawdata = xxx, voltage = xxxmV ...
Code Overview
This chapter will be introduced according to the following several parts:
Peripheral initialization will be introduced in chapter Initialization.
Functional implementation after initialization will be introduced in chapter Function Implementation.
Source Code Directory
Project directory:
sdk\board\evb\io_sample\ADC\OneShotMode
Source code directory:
sdk\src\sample\io_sample\ADC\OneShotMode
Source files are currently categorized into several groups as below.
└── Project: adc_oneshot
└── secure_only_app
└── include
├── app_define.h
└── rom_uuid.h
├── cmsis includes CMSIS header files and startup files
├── overlay_mgr.c
├── system_rtl876x.c
└── startup_rtl876x.s
├── lib includes all binary symbol files that user application is built on
├── rtl8752h_sdk.lib
├── gap_utils.lib
├── ROM.lib
└── adc.lib
├── peripheral includes all peripheral drivers and module code used by the application
├── rtl876x_rcc.c
├── rtl876x_pinmux.c
├── rtl876x_nvic.c
└── rtl876x_adc.c
├── profile
└── app includes the ble_peripheral user application implementation
├── main.c
├── ancs.c
├── app.c
├── app_task.c
└── io_adc.c
Initialization
When the EVB reset is initiated, the main()
function is called, and the following process will be executed:
int main(void)
{
extern uint32_t random_seed_value;
srand(random_seed_value);
global_data_init();
board_init();
le_gap_init(APP_MAX_LINKS);
gap_lib_init();
app_le_gap_init();
app_le_profile_init();
pwr_mgr_init();
task_init();
os_sched_start();
return 0;
}
Note
le_gap_init()
, gap_lib_init()
, app_le_gap_init
, and app_le_profile_init
are related to the initialization of the privacy management module. Refer to the initialization process description in LE Peripheral Privacy.
The specific initialization process related to peripherals is as follows:
In
global_data_init
, executeglobal_data_adc_init
. This function is for global initialization and includes the following process:Execute the
ADC_CalibrationInit()
function for ADC calibration. If the return value is false, ADC calibration failed, possibly because the IC has not undergone FT, thus unable to accurately obtain voltage values.Initialize the global variable
ADC_Global_Data
.
void global_data_adc_init(void) { /* Initialize adc k value! */ APP_PRINT_INFO0("[io_adc] global_data_adc_init"); bool adc_k_status = false; adc_k_status = ADC_CalibrationInit(); if (false == adc_k_status) { APP_PRINT_ERROR0("[io_adc] global_data_adc_init: ADC_CalibrationInit fail!"); } memset(&ADC_Global_Data, 0, sizeof(ADC_Global_Data)); }
In
board_init
, executeboard_adc_init
, which is responsible for PAD/PINMUX settings and includes the following process:Config PAD: Set pin as SW mode, PowerOn, internal Pull-None, disable output.
After executing
os_sched_start()
to start task scheduling, in theapp_main_task
main task, executedriver_init
to initialize and configure the peripheral drivers.In
driver_init
, executedriver_adc_init
, which is the initialization function for the ADC peripheral, including the following process:Enable RCC clock.
Configure ADC sampling channels, configure channel 0 to P2_7 single-ended mode, set Bitmap to 0x01.
If configured as bypass mode, execute
ADC_BypassCmd()
to enable the high resistance mode of the corresponding channel.If the macro
ADC_DATA_HW_AVERAGE
is enabled, enable the ADC Hardware Average mode and configure the number of averages.If the macro
ADC_DATA_OUTPUT_TO_FIFO
is enabled, enable the ADC to store sampled values into FIFO and configure the FIFO threshold.If the macro
ADC_DATA_OUTPUT_TO_FIFO
is enabled, configure theADC_INT_FIFO_THD
interrupt; otherwise, configure theADC_INT_ONE_SHOT_DONE
interrupt.
void driver_adc_init(void) { RCC_PeriphClockCmd(APBPeriph_ADC, APBPeriph_ADC_CLOCK, ENABLE); ADC_InitTypeDef ADC_InitStruct; ADC_StructInit(&ADC_InitStruct); /* Configure the ADC sampling schedule0 */ ADC_InitStruct.ADC_SchIndex[0] = EXT_SINGLE_ENDED(ADC_SAMPLE_CHANNEL_7); /* Set the bitmap corresponding to schedule0*/ ADC_InitStruct.ADC_Bitmap = 0x01; #if (ADC_DATA_HW_AVERAGE && ADC_DATA_OUTPUT_TO_FIFO) APP_PRINT_ERROR0("[io_adc] driver_adc_init: ADC config error !"); #elif (ADC_DATA_HW_AVERAGE ) ADC_InitStruct.ADC_DataAvgEn = ADC_DATA_AVERAGE_ENABLE; ADC_InitStruct.ADC_DataAvgSel = ADC_DATA_AVERAGE_OF_4; #elif (ADC_DATA_OUTPUT_TO_FIFO) ADC_InitStruct.ADC_DataWriteToFifo = ADC_DATA_WRITE_TO_FIFO_ENABLE; ADC_InitStruct.ADC_FifoThdLevel = 0x0A; #endif ADC_InitStruct.ADC_PowerAlwaysOnEn = ADC_POWER_ALWAYS_ON_ENABLE; /* Fixed 255 in OneShot mode. */ ADC_InitStruct.ADC_SampleTime = 255; ADC_Init(ADC, &ADC_InitStruct); #if (ADC_MODE_DIVIDE_OR_BYPASS == ADC_BYPASS_MODE) /* High bypass resistance mode config, please notice that the input voltage of adc channel using high bypass mode should not be over 0.9V */ ADC_BypassCmd(ADC_SAMPLE_CHANNEL_0, ENABLE); APP_PRINT_INFO0("[io_adc] driver_adc_init: ADC sample mode is bypass mode !"); #else ADC_BypassCmd(ADC_SAMPLE_CHANNEL_0, DISABLE); APP_PRINT_INFO0("[io_adc] driver_adc_init: ADC sample mode is divide mode !"); #endif #if (!ADC_DATA_OUTPUT_TO_FIFO) ADC_INTConfig(ADC, ADC_INT_ONE_SHOT_DONE, ENABLE); #else ADC_INTConfig(ADC, ADC_INT_FIFO_THD, ENABLE); #endif NVIC_InitTypeDef NVIC_InitStruct; NVIC_InitStruct.NVIC_IRQChannel = ADC_IRQn; NVIC_InitStruct.NVIC_IRQChannelPriority = 3; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruct); }
Functional Implementation
Execute
os_sched_start()
to start task scheduling. When the stack is ready, executeapp_handle_dev_state_evt
and executeadc_sample_start
to start ADC sampling.If the macro
ADC_DATA_OUTPUT_TO_FIFO
is enabled, clear the ADC FIFO and then perform 10 consecutive ADC samples.If the macro
ADC_DATA_OUTPUT_TO_FIFO
is not enabled, directly executeADC_Cmd()
to start ADC sampling.
void app_handle_dev_state_evt(T_GAP_DEV_STATE new_state, uint16_t cause) { ... if (gap_dev_state.gap_init_state != new_state.gap_init_state) { if (new_state.gap_init_state == GAP_INIT_STATE_STACK_READY) { APP_PRINT_INFO0("GAP stack ready"); /*stack ready*/ io_adc_sample_start(); } } ... } void adc_sample_start(void) { #if (ADC_DATA_OUTPUT_TO_FIFO) ADC_ClearFifo(ADC); for (uint16_t i = 0; i < 10; i++) { ADC_Cmd(ADC, ADC_ONE_SHOT_MODE, ENABLE); platform_delay_ms(10); } #else /* Enable adc sample */ ADC_Cmd(ADC, ADC_ONE_SHOT_MODE, ENABLE); #endif }
If the macro
ADC_DATA_OUTPUT_TO_FIFO
is enabled, when the ADC FIFO number exceeds the set threshold, it triggers theADC_INT_FIFO_THD
interrupt and enters the interrupt handler functionADC_Handler
.Determine whether the interrupt status of the ADC FIFO number exceeding the given value is SET.
Execute
ADC_GetFIFODataLen()
to get the amount of data in the ADC FIFO, and executeADC_ReadFIFOData()
to get the data in the ADC FIFO.Define the message type
IO_MSG_TYPE_ADC
, save the collected data to a global variable, and executeapp_send_msg_to_apptask
to send a message to the task.Execute
ADC_ClearFIFO()
to clear the data in the ADC FIFO and clear the interrupt flag.
void ADC_Handler(void) { ... if (ADC_GetIntFlagStatus(ADC, ADC_INT_FIFO_THD) == SET) { ADC_Global_Data.RawDataLen = ADC_GetFifoLen(ADC); ADC_GetFifoData(ADC, ADC_Global_Data.RawData, ADC_Global_Data.RawDataLen); /* Send msg to app task */ T_IO_MSG int_adc_msg; int_adc_msg.type = IO_MSG_TYPE_ADC; int_adc_msg.u.buf = (void *)(&ADC_Global_Data); if (false == app_send_msg_to_apptask(&int_adc_msg)) { APP_PRINT_ERROR0("[io_adc] ADC_Handler: Send int_adc_msg failed!"); //Add user code here! ADC_ClearFifo(ADC); ADC_ClearINTPendingBit(ADC, ADC_INT_FIFO_THD); return; } ADC_ClearINTPendingBit(ADC, ADC_INT_FIFO_THD); ADC_ClearFifo(ADC); } }
If the macro
ADC_DATA_OUTPUT_TO_FIFO
is not enabled, when the ADC completes a single sampling, it triggers theADC_INT_ONE_SHOT_DONE
interrupt and enters the interrupt handler functionADC_Handler
.Check if the ADC single sampling interrupt status is SET and clear the interrupt flag.
Execute
ADC_ReadRawData()
to read the ADC sampling value.Define the message type
IO_MSG_TYPE_ADC
, save the collected data to a global variable, and executeapp_send_msg_to_apptask
to send the message to the task.
void ADC_Handler(void) { ... if (ADC_GetINTStatus(ADC, ADC_INT_ONE_SHOT_DONE) == SET) { ADC_ClearINTPendingBit(ADC, ADC_INT_ONE_SHOT_DONE); uint16_t sample_data = 0; sample_data = ADC_ReadRawData(ADC, ADC_Schedule_Index_0); T_IO_MSG int_adc_msg; int_adc_msg.type = IO_MSG_TYPE_ADC; int_adc_msg.subtype = 0; ADC_Global_Data.RawDataLen = 1; ADC_Global_Data.RawData[0] = sample_data; int_adc_msg.u.buf = (void *)(&ADC_Global_Data); if (false == app_send_msg_to_apptask(&int_adc_msg)) { APP_PRINT_ERROR0("[io_adc] ADC_Handler: Send int_adc_msg failed!"); //Add user code here! ADC_ClearINTPendingBit(ADC, ADC_INT_ONE_SHOT_DONE); return; } } ... }
In
app_main_task
, loop to check the message queue. When a message (msg) is detected, execute theapp_handle_io_msg
function to process the msg.In the
app_handle_io_msg
function, if the message type is determined to beIO_MSG_TYPE_ADC
, execute theio_handle_adc_msg
function, and executeio_adc_voltage_calculate
.Extract the sampling data from the msg.
If the macro
ADC_DATA_HW_AVERAGE
is enabled, calculate the integer and fractional parts of the sampled values separately.Execute
ADC_GetVoltage()
to calculate the sampling voltage value based on the sampling mode.
Note
The raw data obtained in ADC Hardware Average mode has the lower 2 bits as the decimal part and the upper 12 bits as the integer part.
static void io_adc_voltage_calculate(T_IO_MSG *io_adc_msg) { ADC_Data_TypeDef *p_buf = io_adc_msg->u.buf; uint8_t sample_data_len = 0; uint16_t sample_data = 0; sample_data_len = p_buf->RawDataLen; for (uint8_t i = 0; i < sample_data_len; i++) { sample_data = p_buf->RawData[i]; DBG_DIRECT("io_adc_voltage_calculate: raw_data = 0x%X", sample_data); #if (ADC_DATA_HW_AVERAGE ) sample_data = (p_buf->RawData[i] & 0x3FFC) >> 2; uint16_t sample_data_decimal = (p_buf->RawData[i] & 0x3); float cacl_result = sample_data; float cacl_result_dec = 0; cacl_result_dec = (float)(sample_data_decimal & 0x1) / 2 + (float)((sample_data_decimal >> 1) & 0x1) / 4; cacl_result += cacl_result_dec; DBG_DIRECT("io_adc_voltage_calculate: sample_data = %d, cacl_result = %d\r\n", sample_data, (uint32_t)cacl_result); #endif float sample_voltage = 0; ADC_ErrorStatus error_status = NO_ERROR; #if (ADC_MODE_DIVIDE_OR_BYPASS == ADC_BYPASS_MODE) sample_voltage = ADC_GetVoltage(BYPASS_SINGLE_MODE, (int32_t)sample_data, &error_status); #else sample_voltage = ADC_GetVoltage(DIVIDE_SINGLE_MODE, (int32_t)sample_data, &error_status); #endif if (error_status < 0) { APP_PRINT_INFO1("[io_adc] io_adc_voltage_calculate: ADC parameter or efuse data error! error_status = %d", error_status); } else { APP_PRINT_INFO2("[io_adc] io_adc_voltage_calculate: ADC rawdata = %d, voltage = %dmV ", sample_data, (uint32_t)sample_voltage); } } memset(&ADC_Global_Data, 0, sizeof(ADC_Global_Data)); }
Troubleshooting
If the IC obtained has not been verified by FT, the ADC will not be able to convert to the correct voltage value. The following message will be printed within the log tool.
[ADC]ADC_CalibrationInit fail!
If the ADC sample value is incorrect, print the error status.
[ADC]adc_sample_demo: ADC parameter or efuse data error! i = xxx, error_status = xxx