IR Transmit - DMA Transfer
This example demonstrates the use of the infrared transmission function.
This instance uses the IR peripheral to send data via DMA, achieving the infrared transmission function.
A logic analyzer is used to observe the IR transmission waveform.
Requirements
The sample supports the following development kits:
Hardware Platforms |
Board Name |
---|---|
RTL8752H HDK |
RTL8752H EVB |
For more requirements, please refer to Quick Start.
Wiring
Connect the IR transmit pin P2_5 to the logic analyzer.
Building and Downloading
This sample can be found in the SDK folder:
Project file: board\evb\io_sample\IR\Tx+GDMA\mdk
Project file: board\evb\io_sample\IR\Tx+GDMA\gcc
Please follow these steps to build and run the example:
Open sample project file.
To build the target, follow the steps listed on the Generating App Image in Quick Start.
After a successful compilation, the app bin
app_MP_xxx.bin
will be generated in the directorymdk\bin
orgcc\bin
.To download app bin into EVB board, follow the steps listed on the MP Tool Download in Quick Start.
Press reset button on EVB board and it will start running.
Experimental Verification
Observe the IR transmit waveform with a logic analyzer.

IR Transmit Waveform
Code Overview
This chapter will be introduced according to the following several parts:
Peripheral initialization will be introduced in chapter Initialization.
Functional implementation after initialization will be introduced in chapter Function Implementation.
Source Code Directory
Project directory:
sdk\board\evb\io_sample\IR\Tx+GDMA
Source code directory:
sdk\src\sample\io_sample\IR\Tx+GDMA
Source files are currently categorized into several groups as below.
└── Project: tx_gdma
└── secure_only_app
└── include
├── app_define.h
└── rom_uuid.h
├── cmsis includes CMSIS header files and startup files
├── overlay_mgr.c
├── system_rtl876x.c
└── startup_rtl876x.s
├── lib includes all binary symbol files that user application is built on
├── rtl8752h_sdk.lib
├── gap_utils.lib
├── ROM.lib
└── adc.lib
├── peripheral includes all peripheral drivers and module code used by the application
├── rtl876x_rcc.c
├── rtl876x_pinmux.c
├── rtl876x_nvic.c
├── rtl876x_gdma.c
└── rtl876x_ir.c
├── profile
└── app includes the ble_peripheral user application implementation
└── main.c
Initialization
When the EVB is reset, the main
function is executed, following these steps:
int main(void)
{
extern uint32_t random_seed_value;
srand(random_seed_value);
__enable_irq();
ir_demo();
...
}
In ir_demo
, it includes the PAD/PINMUX settings, IR peripheral initialization, and DMA peripheral initialization processes.
void ir_demo(void)
{
...
board_ir_init();
driver_ir_init(IR_Send_Data.CarrierFreq);
driver_ir_gdma_init();
...
}
board_ir_init
is for PAD and PINMUX settings related to IR pins, including the following steps:
Configure PAD: Set pin, PINMUX mode, PowerOn, internal pull-none, and output low.
Configure PINMUX: Assign pin to IRDA_TX function.
driver_ir_init
is for initializing the IR peripheral, including the following steps:
Enable RCC clock.
Set IR transmission frequency to 38kHz.
Set IR carrier duty cycle to 1/3.
Set IR to transmission mode.
Set IR transmission data to non-inverted.
Set IR transmission FIFO threshold to 2.
Enable IR DMA transmission and set waterLevel.
void driver_ir_init(uint32_t vFreq) { /* Enable ir clock */ RCC_PeriphClockCmd(APBPeriph_IR, APBPeriph_IR_CLOCK, ENABLE); /* Initialize ir */ IR_InitTypeDef IR_InitStruct; IR_StructInit(&IR_InitStruct); IR_InitStruct.IR_Freq = vFreq;//vFreq; IR_InitStruct.IR_DutyCycle = 3; /* !< 1/3 duty cycle */ IR_InitStruct.IR_Mode = IR_MODE_TX; IR_InitStruct.IR_TxInverse = IR_TX_DATA_NORMAL; IR_InitStruct.IR_TxFIFOThrLevel = IR_TX_FIFO_THR_LEVEL; IR_InitStruct.IR_TxDmaEn = ENABLE; IR_InitStruct.IR_TxWaterLevel = 15; IR_Init(&IR_InitStruct); }
driver_ir_gdma_init
is the initialization for the DMA peripheral, including the following processes:
Enable the RCC clock.
Use DMA channel 1.
Set the DMA transfer direction from memory to peripheral.
Set the source address to
GDMA_Send_Buf
and destination address to&IR->TX_FIFO
.Enable the DMA channel 1 total transfer complete interrupt
GDMA_INT_Transfer
.Enable DMA transfer.
void driver_ir_gdma_init(void) { RCC_PeriphClockCmd(APBPeriph_GDMA, APBPeriph_GDMA_CLOCK, ENABLE); GDMA_InitTypeDef GDMA_InitStruct; /*--------------GDMA init-----------------------------*/ GDMA_StructInit(&GDMA_InitStruct); GDMA_InitStruct.GDMA_ChannelNum = IO_TEST_GDMA_CHANNEL_MUM; GDMA_InitStruct.GDMA_BufferSize = IO_TEST_GDMA_TRANSFER_SIZE; GDMA_InitStruct.GDMA_DIR = GDMA_DIR_MemoryToPeripheral; GDMA_InitStruct.GDMA_SourceInc = DMA_SourceInc_Inc; GDMA_InitStruct.GDMA_DestinationInc = DMA_DestinationInc_Fix; GDMA_InitStruct.GDMA_SourceDataSize = GDMA_DataSize_Word; GDMA_InitStruct.GDMA_DestinationDataSize = GDMA_DataSize_Word; GDMA_InitStruct.GDMA_SourceMsize = GDMA_Msize_1; GDMA_InitStruct.GDMA_DestinationMsize = GDMA_Msize_1; GDMA_InitStruct.GDMA_SourceAddr = (uint32_t)(GDMA_Send_Buf); GDMA_InitStruct.GDMA_DestinationAddr = (uint32_t)(&IR->TX_FIFO); GDMA_InitStruct.GDMA_DestHandshake = GDMA_Handshake_IR_TX; GDMA_Init(IO_TEST_GDMA_Channel, &GDMA_InitStruct); GDMA_INTConfig(IO_TEST_GDMA_CHANNEL_MUM, GDMA_INT_Transfer, ENABLE); /*-----------------GDMA IRQ init-------------------*/ NVIC_InitTypeDef nvic_init_struct; nvic_init_struct.NVIC_IRQChannel = IO_TEST_GDMA_Channel_IRQn; nvic_init_struct.NVIC_IRQChannelCmd = (FunctionalState)ENABLE; nvic_init_struct.NVIC_IRQChannelPriority = 3; NVIC_Init(&nvic_init_struct); GDMA_Cmd(IO_TEST_GDMA_CHANNEL_MUM, ENABLE); }
Functional Implementation
Define the IR transmission data array: carrier data is represented by performing an OR operation between the number of carriers and 0x80000000, while non-carrier data is represented by performing an OR operation between the number of carriers and 0x00000000.
Execute
IR_Cmd()
to enable the IR peripheral transmission function.void ir_demo(void) { /* Data to send */ IR_Send_Data.CarrierFreq = 38000; IR_Send_Data.DataLen = IO_TEST_GDMA_TRANSFER_SIZE; IR_Send_Data.DataBuf[0] = 0x80000000 | 0x200; IR_Send_Data.DataBuf[1] = 0x00000000 | 0x100; for (uint16_t i = 2; i < IR_Send_Data.DataLen - 1;) { IR_Send_Data.DataBuf[i] = 0x80000000 | (0x0A + i * 5); IR_Send_Data.DataBuf[i + 1] = 0x00000000 | (0x14 + i * 5); i += 2; } IR_Send_Data.DataBuf[IR_Send_Data.DataLen - 1] = 0x80000000 | 0x800; /* Test data buffer */ for (uint32_t i = 0; i < IO_TEST_GDMA_TRANSFER_SIZE; i++) { GDMA_Send_Buf[i] = IR_Send_Data.DataBuf[i]; } ... IR_Cmd(IR_MODE_TX, ENABLE); }
When the DMA has completed transferring the data, it triggers the
GDMA_INT_Transfer
interrupt and enters the DMA interrupt handler functionIO_TEST_GDMA_Channel_Handler
.Disable the DMA channel 1 total transfer completion interrupt
GDMA_INT_Transfer
, disable DMA channel 1 transfer, and clear the interrupt pending bit.After all IR waveforms have been transmitted, the IR transmission waveform can be observed on the logic analyzer.
void IO_TEST_GDMA_Channel_Handler(void) { GDMA_INTConfig(IO_TEST_GDMA_CHANNEL_MUM, GDMA_INT_Transfer, DISABLE); GDMA_Cmd(IO_TEST_GDMA_CHANNEL_MUM, DISABLE); DBG_DIRECT("IO_TEST_GDMA_Channel_Handler\r\n"); GDMA_ClearINTPendingBit(IO_TEST_GDMA_CHANNEL_MUM, GDMA_INT_Transfer); }